
ORNL is managed by UT-Battelle
for the US Department of Energy

Introduction to GPU
Computing

J. Austin Harris
Scientific Computing Group
Oak Ridge National Laboratory

2 J. Austin Harris --- JETSCAPE --- 2020

Performance Development in Top500

• Yardstick for measuring
performance in HPC
– Solve Ax = b

– Measure floating-point

operations per second

(Flop/s)

• U.S. targeting Exaflop
system as early as 2022
– Building on recent trend of

using GPUs

https://www.top500.org/statistics/perfdevel

1 Exaflop/s

https://www.top500.org/statistics/perfdevel

3 J. Austin Harris --- JETSCAPE --- 2020

Hardware Trends

• Scaling number of
cores/chip instead of
clock speed

• Power is the root cause
– Power density limits clock

speed

• Goal has shifted to
performance through
parallelism

• Performance is now a
software concern

Figure from Kathy Yelick, “Ten Ways to Waste a Parallel Computer.”
Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç.

4 J. Austin Harris --- JETSCAPE --- 2020

GPUs for Computation

• Excellent at graphics rendering
– Fast computation (e.g., TV refresh rate)
– High degree of parallelism (millions of independent pixels)
– Needs high memory bandwidth

• Often sacrifices latency, but this can be ameliorated

• This computation pattern common in many scientific applications

5 J. Austin Harris --- JETSCAPE --- 2020

GPUs for Computation

• CPU Strengths

– Large memory
– Fast clock speeds
– Large cache for

latency optimization
– Small number of

threads that can run
very quickly

• CPU Weaknesses
– Low mem. bandwidth
– Costly cache misses
– Low perf./watt

• GPU Strengths

– High mem. BW
– Latency tolerant via

parallelism
– More compute

resources (cores)
– High perf./watt

• GPU Weaknesses

– Low mem. Capacity
– Low per-thread perf.

Slide from Jeff Larkin, “Fundamentals of GPU Computing”

6 J. Austin Harris --- JETSCAPE --- 2020

GPU Programming Approach

• Heterogeneous Programming
– Small, non-parallelizable tasks on CPU

– Large, parallel tasks on GPU

• Challenges
– Increase in parallelism

• New algorithms?
– Increase in communication cost

• PCIe bandwidth between devices much
slower than that on GPU or CPU alone

7 J. Austin Harris --- JETSCAPE --- 2020

GPU Programming Models

Libraries
(cuBLAS, cuFFT,

MAGMA, …)
High performance for
limited code change

Limited by availability of
libraries

Compiler Directives
(OpenACC, OpenMP, …)
High-level extensions to

existing languages
Less fine-grain control

over performance

Programming
Languages

(CUDA, OpenCL, HIP, …)
Expose low-level details
to maximize performance

More difficult and time
consuming to implement

Error prone

3 ways to program GPUs

8 J. Austin Harris --- JETSCAPE --- 2020

GPU Accelerated Libraries
(not an exhaustive list)

Linear Algebra (dense) cuBLAS, cuSPARSE, MAGMA, SLATE
FFT cuFFT, FFT-X, heFFTe
Random Number Generation cuRAND
Linear Solvers cuSOLVER, PETSc, SuperLU
ODE SUNDIALS
Algebraic Multigrid AmgX, hypre
Tensor Algebra cuTENSOR, TAL-SH
Data Structures (e.g., sort, scan, …) Thrust, rocPRIM
ML & AI cuDNN, CUTLASS, Rapids

* Most NVIDIA libraries (e.g., cuBLAS) have AMD counter-parts (rocBLAS)

9 J. Austin Harris --- JETSCAPE --- 2020

GPU Libraries Example

real(8) :: x(n), y(n), a
integer :: n, i

! Initialize data
allocate(x(n),y(n))
call initData(x,y)

do i=1,n
y(i) = a*x(i)+y(i)

enddo

use iso_c_binding
use cublas_module ! Fortran interfaces
use cuda_module ! Fortran interfaces

real(8) :: x(n), y(n), a
integer :: n, i, ierr
type(c_ptr) :: dx, dy

! Initialize data on CPU
allocate(x(n),y(n))
call initData(x,y)

! Copy data from CPU->GPU
ierr = cudaMalloc(dx,n*sizeof(x))
ierr = cudaMalloc(dy,n*sizeof(y))
ierr = cublasSetVector(n,sizeof(x),x,1,dx,1)
ierr = cublasSetVector(n,sizeof(y),y,1,dy,1)

ierr = cublasDaxpy(n, a, dx, 1, dy, 1)

! Bring the result back to the CPU
ierr = cublasGetVector(n,sizeof(y),dy,1,y,1)

10 J. Austin Harris --- JETSCAPE --- 2020

Compiler Directives

• OpenMP device offload
– Extension of OpenMP for multi-core

threading to accelerators

– Part of standard since 4.5

– Supports Fortran, C, C++

– Features lag OpenACC by 1+ year

– Limited compiler support, but this is

changing

• Available on Summit with IBM XL compilers

• OpenACC
– Designed specifically for accelerators

– More advanced features than OpenMP

– Only available with GNU and PGI

compilers

11 J. Austin Harris --- JETSCAPE --- 2020

OpenACC Parallel Directive

C/C++ : #pragma acc parallel
Fortran: !$acc parallel
Generates parallelism
#pragma acc parallel
{

The parallel directive will generate 1
or more parallel gangs which execute
redundantly

}

12 J. Austin Harris --- JETSCAPE --- 2020

OpenACC Loop Directive

C/C++ : #pragma acc loop
Fortran: !$acc loop
Identifies loops to run in parallel
#pragma acc parallel
{

#pragma acc loop
for (i=0; i<n; ++i)
{
}

}

13 J. Austin Harris --- JETSCAPE --- 2020

OpenACC Parallel Loop Directive

C/C++ : #pragma acc parallel loop
Fortran: !$acc parallel loop
Generates parallelism AND identifies
loop in one directive
#pragma acc parallel loop
for (i=0; i<n; ++i)
{
}

14 J. Austin Harris --- JETSCAPE --- 2020

Directives Example

real(8) :: x(n), y(n), a
integer :: n, i

! Initialize data
allocate(x(n),y(n))
call initData(x,y)

do i=1,n
y(i) = a*x(i)+y(i)

enddo

real(8) :: x(n), y(n), a
integer :: n, i, ierr

! Initialize data on CPU
allocate(x(n),y(n))
call initData(x,y)

#ifdef USE_OPENACC
!$acc enter data copyin(x,y)

!$acc parallel loop gang vector
#else
!$omp target enter data map(to:x,y)

!$omp target teams distribute &
!$omp parallel do simd
#endif

do i=1,n
y(i) = a*x(i)+y(i)

enddo

! Bring the result back to the CPU
#ifdef USE_OPENACC
!$acc exit data copyout(y)
#else
!$acc target exit data map(from:y)
#endif

Preprocessor directives
for portability

15 J. Austin Harris --- JETSCAPE --- 2020

GPU Programming Languages

• CUDA C
– NVIDIA extension to C programming language

• “At its core are three key abstractions – a hierarchy of thread groups, shared memories,
and barrier synchronization – that are simply exposed to the programmer as a minimal set
of language extensions (to C programming language)” -- CUDA Programming Guide

– Compiled with nvcc compiler

• Other GPU languages are around, but won’t discuss these today
– HIP, SYCL, OpenCL, DPC++

16 J. Austin Harris --- JETSCAPE --- 2020

CUDA C

__global__ void daxpy(int n,double a,double *x,double *y)
• __global__ keyword

– indicates a CUDA kernel function that is called by the host and executed on the device

Grid

Blocksint i = blockIdx.x*blockDim.x + threadIdx.x;

• Thread indexing
– This defines a unique thread ID among all threads in a grid

if (i < n) y[i] = a*x[i] + y[i];

• Check that thread ID is not larger than number of elements

Threads

Number of threads
within each block

Which block the
thread belongs to

Local thread ID
within thread block

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

17 J. Austin Harris --- JETSCAPE --- 2020

CUDA C Example

int n = 1000000;
double a = 2.0;

x = (double *)malloc(N * sizeof(double));
y = (double *)malloc(N * sizeof(double));
initData(x, y);

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

__global__
void daxpy(int n,double a,double *x,double *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

int n = 1000000;
double a = 2.0;

x = (double *)malloc(N * sizeof(double));
y = (double *)malloc(N * sizeof(double));
cudaMalloc(&dx, n * sizeof(double));
cudaMalloc(&dy, n * sizeof(double));
initData(x, y);

cudaMemcpy(dx,x,n,cudaMemcpyHostToDevice);
cudaMemcpy(dy,y,n,cudaMemcpyHostToDevice);

daxpy<<<4096,256>>>(n, a, dx, dy);

cudaMemcpy(y,dy,n,cudaMemcpyDeviceToHost);

<<<blocks in grid, threads per block>>>

18 J. Austin Harris --- JETSCAPE --- 2020

GPU Programming Models

Slide from Jeff Larkin, “Fundamentals of GPU Computing”

19 J. Austin Harris --- JETSCAPE --- 2020

Scientific Application Example
Compiler Directives Linear Algebra Libraries

~100x speedup relative to
serial CPU code

