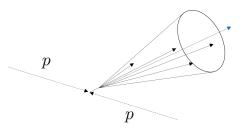
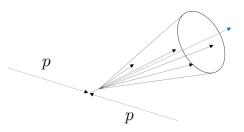
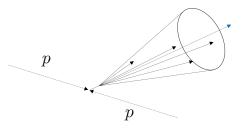
Hadronization and jet substructure at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC)

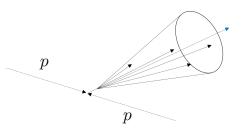
Joe Osborn


Oak Ridge National Laboratory, University of Michigan

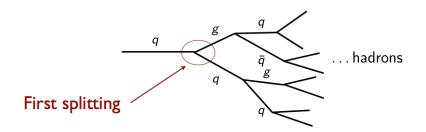
March 18, 2020




- Jet physics is a broad experimental endeavor at RHIC and the LHC
- Enabled by more robust comparisons that can be made between theory and experiment with recent jet finding algorithms


- Jet physics is a broad experimental endeavor at RHIC and the LHC
- Enabled by more robust comparisons that can be made between theory and experiment with recent jet finding algorithms
- Jets are a proxy for partons, and thus provide sensitivity to the underlying partonic dynamics

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jets

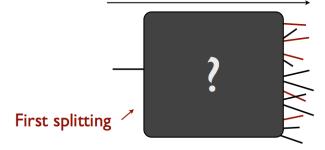

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jets
- We can use a perturbative object to learn about nonperturbative physics

How do jets really form?

Parton shower: in theory....

direction of shower

direction of clustering



Hard Probes - Wuhan - September 2016

Jet Formation

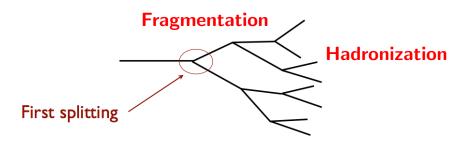
Parton shower: in practice

direction of shower

direction of clustering

Matteo Cacciari - LPTHE

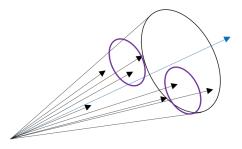
Joe Osborn (ORNL)


Hard Probes - Wuhan - September 2016

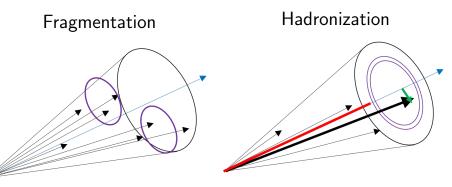
3

Jet Formation

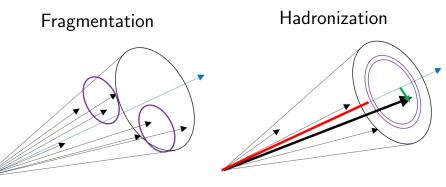
direction of shower


direction of clustering

Hard Probes - Wuhan - September 2016


Fragmentation vs. Hadronization

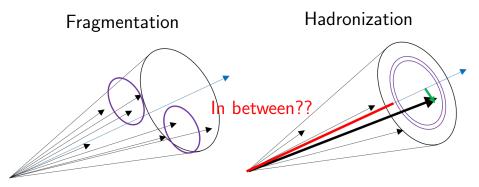
Fragmentation


• Use jet grooming algorithms to identify "prongs" of jet, as a proxy for partonic splittings

Fragmentation vs. Hadronization

- Use jet grooming algorithms to identify "prongs" of jet, as a proxy for partonic splittings
- Use individual hadrons to study correlations with jet axis

Fragmentation vs. Hadronization

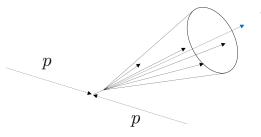


• Use jet grooming algorithms to identify "prongs" of jet, as a proxy for partonic splittings

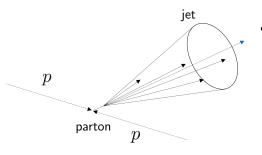
Emphasis on perturbative QCD

• Use individual hadrons to study correlations with jet axis

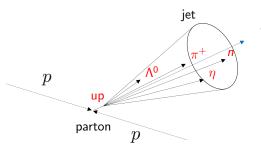
Emphasis on NONperturbative QCD

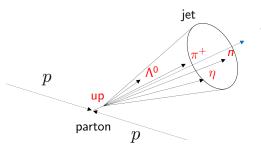


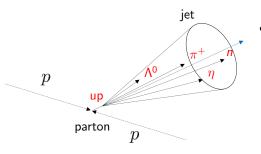
• Use jet grooming algorithms to identify "prongs" of jet, as a proxy for partonic splittings


Emphasis on perturbative QCD

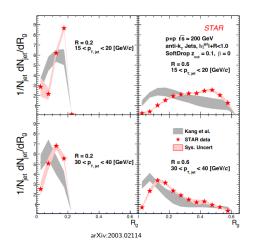
• Use individual hadrons to study correlations with jet axis


Emphasis on NONperturbative QCD


• What is on our wish list to *robustly* study hadronization?


- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative

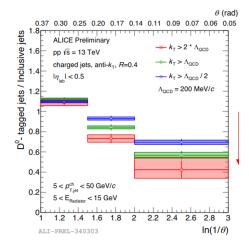
- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron


- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron
 - 3. Statistics to study multi-differential correlations

- Baryon vs. meson
- Resonance production (ϕ , J/ψ , Υ)
- Correlations (e.g. kinematic, PIDed...)

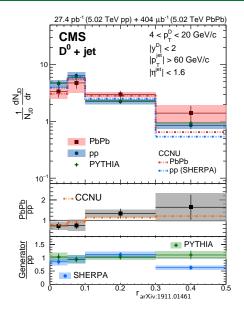
• ...

- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron
 - 3. Statistics to study multi-differential correlations

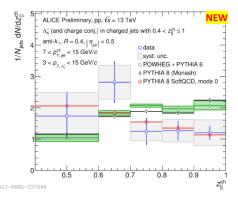


- New STAR results are first study at RHIC of Soft Drop splittings
- Highlight R_G, which shows need for more robust theory calculations relating fragmentation and hadronization effects

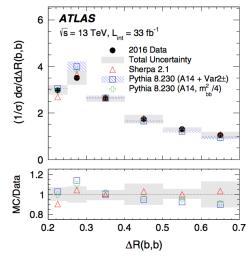
Joe Osborn (ORNL)


Flavor Dependence - Heavy Quarks

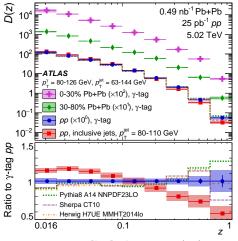
- First study trying to observe the dead cone effect
- Suppression of splittings at small angles comparing D^0 to inclusive jets



Flavor Dependence - Heavy Quarks

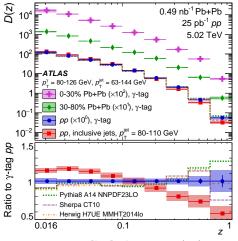

- First study trying to observe the dead cone effect
- Suppression of splittings at small angles comparing D^0 to inclusive jets
- Measurement of D^0 production as a function of radial dimension

- First study trying to observe the dead cone effect
- Suppression of splittings at small angles comparing D⁰ to inclusive jets
- Measurement of D⁰ production as a function of radial dimension
- More exotic Λ_c^+ hadronization studies

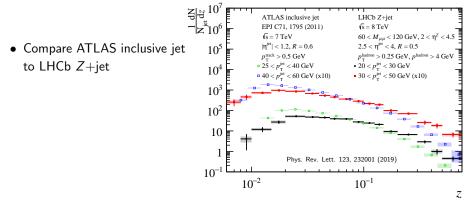

Flavor Dependence - $g \rightarrow b\bar{b}$

Phys. Rev. D 99, 052004 (2019)

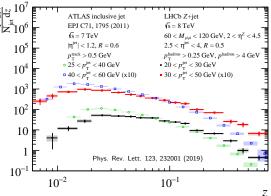
- Measurement of bb jets from gluon splitting
- Improve understanding of boosted $H
 ightarrow b ar{b}$ decays
- Improve understanding of $b\bar{b}$ fragmentation


Flavor Dependence - Quark vs. Gluon

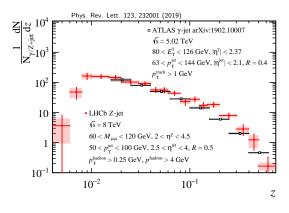
Phys. Rev. Lett. 123, 042001 (2019)


- Starting to move towards flavor dependence
- Use direct photon tags to preferentially select light quarks vs. gluons

Flavor Dependence - Quark vs. Gluon


Phys. Rev. Lett. 123, 042001 (2019)

- Starting to move towards flavor dependence
- Use direct photon tags to preferentially select light quarks vs. gluons
- On average, light quark jets produce higher momentum particles than gluon jets



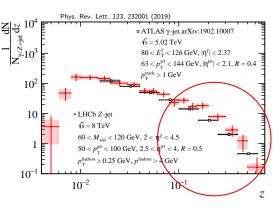
LHCb quark jet (filled) - red and black ATLAS gluon jet (open) - blue and green

- Compare ATLAS inclusive jet to LHCb Z+jet
- Light quark jets produce higher momentum particles than gluon jets
- Light quark jets are more collimated than gluon jets

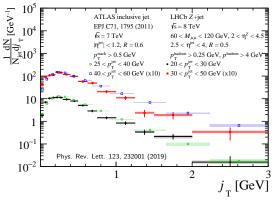
LHCb quark jet (filled) - red and black ATLAS gluon jet (open) - blue and green ATLAS midrapidity γ-jet and LHCb forward rapidity Z-jet distributions are very similar

LHCb quark jet (filled) - red ATLAS quark jet (open) - black

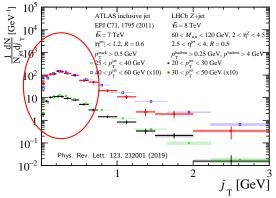
LHCb $Z{+}{\rm jet}$ vs. ATLAS $\gamma{-}{\rm jet}$


- ATLAS midrapidity γ-jet and LHCb forward rapidity Z-jet distributions are very similar
- Both processes light quark jet dominated
- Light quark jet structure shows little rapidity dependence

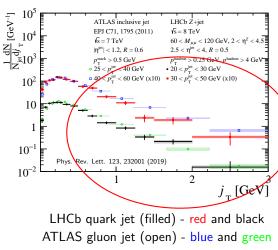
LHCb quark jet (filled) - red ATLAS quark jet (open) - black


LHCb $Z{+}{\rm jet}$ vs. ATLAS $\gamma{-}{\rm jet}$

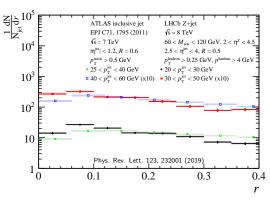
- ATLAS midrapidity γ-jet and LHCb forward rapidity Z-jet distributions are very similar
- Both processes light quark jet dominated
- Light quark jet structure shows little rapidity dependence
- Hint of more collimated jets in *Z*+jet
 - Massive Z vs. massless γ ?


LHCb quark jet (filled) - red ATLAS quark jet (open) - black

- Transverse momentum distributions show smaller (*j_T*) in *Z*+jet vs. inclusive jet at small *j_T*
 - Consistent with more collimated light quark vs. gluon jets

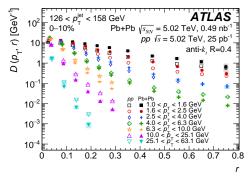

LHCb quark jet (filled) - red and black ATLAS gluon jet (open) - blue and green

- Transverse momentum distributions show smaller $\langle j_T \rangle$ in Z+jet vs. inclusive jet at small j_T
 - Consistent with more collimated light quark vs. gluon jets

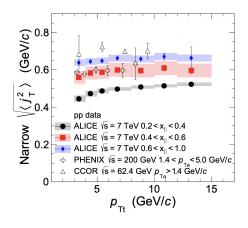


LHCb quark jet (filled) - red and black ATLAS gluon jet (open) - blue and green

- Transverse momentum distributions show smaller $\langle j_T \rangle$ in Z+jet vs. inclusive jet at small j_T
 - Consistent with more collimated light quark vs. gluon jets
- Perturbative region quite similar between quark and gluon jets

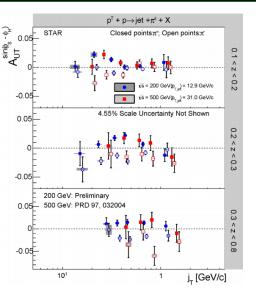


- Comparing ATLAS midrapidity inclusive jets to LHCb forward Z+jet shows jets are more collimated when tagged with a Z
- Gluon jets "flatter" in radius, while light quark jets are "steeper"

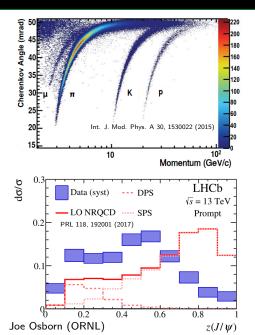

LHCb quark jet (filled) - red and black ATLAS gluon jet (open) - blue and green

Multi-dimensional Measurements

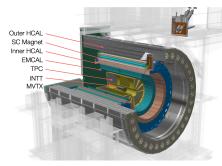
Phys. Rev. C 100, 064901 (2019)


- We now have statistics to make multi-dimensional measurements!
 - Provide more information and deeper understanding than inclusive measurements
- Correlations between p_T and r of hadrons within jets

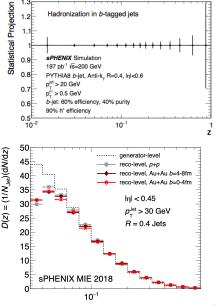
JHEP 1903, 169 (2019)


- We now have statistics to make multi-dimensional measurements!
 - Provide more information and deeper understanding than inclusive measurements
- Correlations between *p*_T and *r* of hadrons within jets
- Correlations between x_E (proxy for z) and j_T

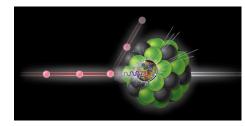
Multi-dimensional Measurements


- We now have statistics to make multi-dimensional measurements!
 - Provide more information and deeper understanding than inclusive measurements
- Correlations between p_T and r of hadrons within jets
- Correlations between x_E (proxy for z) and j_T
- Correlations between *z*, *j_T*, and angular production sensitive to 3D polarized FFs

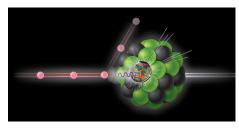
Future Jet Hadronization Measurements


- Where are we headed, and what don't we have?
 - Particle ID (tracking, RICH, calorimetry)
 - Heavy flavor jet tagging
 - Resonance production within jets $(\phi, J/\psi, \Upsilon)$
 - Correlations with flavor ID

- sPHENIX is a dedicated jet detector being constructed at RHIC
- CD3 recently approved, construction is moving forward for installation in 2022



Future Jet Hadronization Measurements

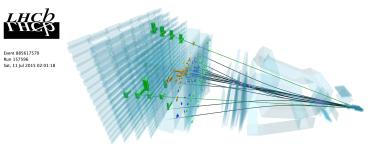

- sPHENIX is a dedicated jet detector being constructed at RHIC
- CD3 recently approved, construction is moving forward for installation in 2022
- Jet substructure and hadronization a major component of science case

• Electron Ion Collider (EIC) will be a QCD physics machine

- Electron Ion Collider (EIC) will be a QCD physics machine
- Hadronization is a major pillar of EIC physics case
- Developing ideas in the next decade before EIC will be crucial to maximize science output of this unique QCD machine!

• Jet substructure and hadronization has exploded onto the high energy and nuclear physics scene, with wide ranging physics interests

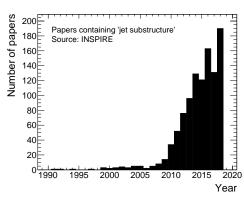
- Jet substructure and hadronization has exploded onto the high energy and nuclear physics scene, with wide ranging physics interests
- Entering phase of synthesizing information and asking more fundamental questions
 - Kinematic correlations between hadrons in jets
 - Light quark vs. gluon jet hadronization
 - Heavy quark jet substructure


- Jet substructure and hadronization has exploded onto the high energy and nuclear physics scene, with wide ranging physics interests
- Entering phase of synthesizing information and asking more fundamental questions
 - Kinematic correlations between hadrons in jets
 - Light quark vs. gluon jet hadronization
 - Heavy quark jet substructure
- Many opportunities moving forward, beginning to utilize PID, multidifferential measurements, etc.

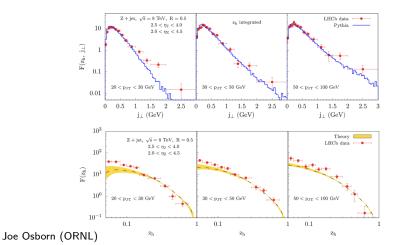
- Jet substructure and hadronization has exploded onto the high energy and nuclear physics scene, with wide ranging physics interests
- Entering phase of synthesizing information and asking more fundamental questions
 - Kinematic correlations between hadrons in jets
 - Light quark vs. gluon jet hadronization
 - Heavy quark jet substructure
- Many opportunities moving forward, beginning to utilize PID, multidifferential measurements, etc.
- Ideas behind hadronization are relatively undeveloped, but there will be significant growth with current and future experiments!

Back Up

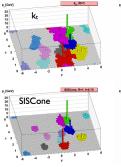
Analysis Details

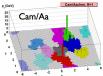

- Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011), NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))
- + $Z
 ightarrow \mu^+ \mu^-$ identified with 60 $< M_{\mu\mu} <$ 120 GeV, in 2 $< \eta <$ 4.5
- Anti-k_T jets are measured with R= 0.5, $p_T^{jet}>$ 20 GeV, in 2.5 $<\eta<$ 4
- + $|\Delta \phi_{Z+jet}| > 7\pi/8$ and single primary vertex selects 2 ightarrow 2 topology
- Charged hadrons identified with $p_T > 0.25$ GeV, p > 4 GeV, $\Delta R < 0.5$
- Results efficiency corrected and 2D Bayesian unfolded

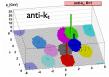
Joe Osborn


Jet Substructure

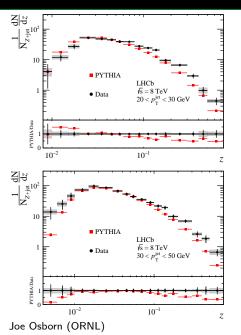
- Searching "find fulltext 'jet substructure' and tc p" on INSPIRE yields number of published papers
- Number of papers per year has exploded in last decade
- Papers discuss wide range of physics interests
 - Searches for new particles
 - Heavy flavor jet tagging
 - BSM searches (e.g. dark matter)
 - Heavy ion collisions
 - Machine learning
 - QCD color connections
 - ...


Theory Comparisons

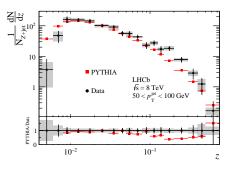

- Theory colleagues have already published comparisons to data
- Reasonable description of data
- However, LHCb data has started a discussion on best (theoretically) tractable ways to study hadronization



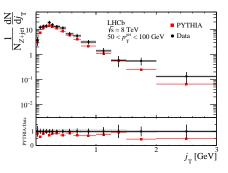
- Sequential recombination algorithm which clusters particles into jets based on their p_T
- Widely used as it is both infrared and collinear safe in calculations
- Clusters particles around highest p_T particle in a conical shape


$$d_{ij} = min(p_{T_i}^{-2}, p_{T_j}^{-2}) \frac{\Delta_{ij}^2}{R^2}$$

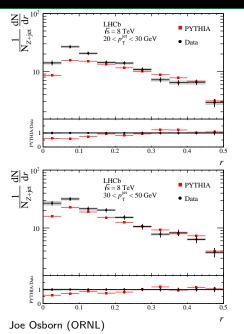
 $d_{iB} = p_{T_i}^{-2}$

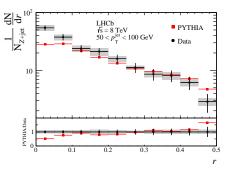



Comparisons with PYTHIA (z)

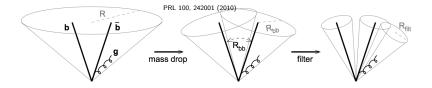


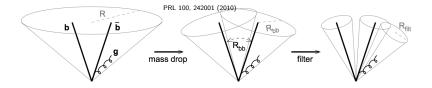
• PYTHIA generally underpredicts the number of high *z* hadrons


Comparisons with PYTHIA (j_T)

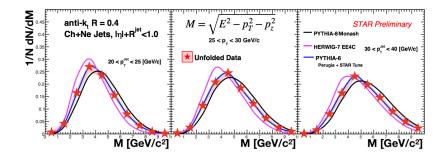


• PYTHIA generally gets *j*_T shape, with about a 20% difference in normalization

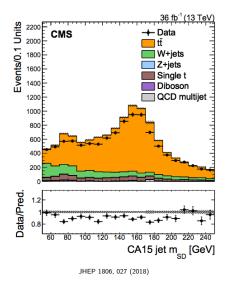

Comparisons with PYTHIA (r)


• PYTHIA generally underpredicts the number of small *r* hadrons

Symbolic Beginning

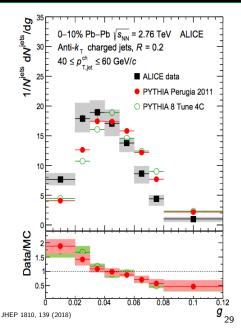

- Substructure revolution symbolically initiated by 2010 Butterworth *et al* PRL
- Motivated by searching for highly boosted $V\!H
 ightarrow \ell^\pm b ar b$ production

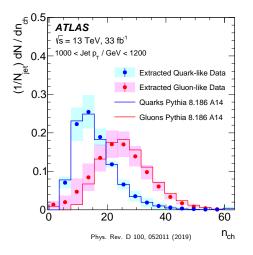
Symbolic Beginning


- Substructure revolution symbolically initiated by 2010 Butterworth *et al* PRL
- Motivated by searching for highly boosted $V\!H
 ightarrow \ell^\pm b ar b$ production
- Jet substructure was motivated by new particle searches
- However, many fields of physics at collider facilities quickly realized the potential of these techniques

Jet Substructure Physics at RHIC

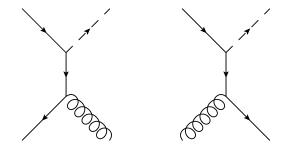
- Measurement of jet mass sensitive to both fragmentation and hadronization aspects of jet substructure!
- Can study the interplay and connections between both

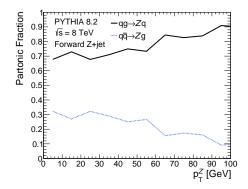

Jet Substructure at the LHC


- Searches for dark matter particles using jet substructure techniques
- Soft drop algorithm recursively removes soft, wide angle radiation to better identify *tī* candidates
 - Improves searches for new particles

Jet Substructure at the LHC

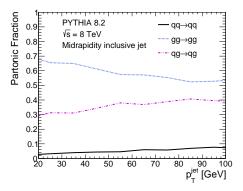
- Jet girth shows transverse momentum weighted width
- Indication of how "wide" jets are based on their hadronic constituents
- Improves understanding of nonperturbative hadronization dynamics


Central vs. Forward Jets

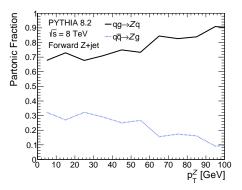

- Leverage different rapidity regions to extract quark-like and gluon-like data
- Investigate radiation pattern differences between light quarks and gluons

Z+jet

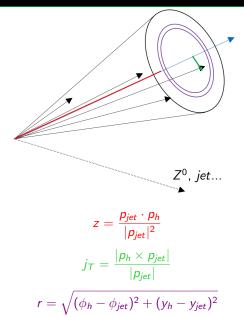
• Why Z+jet?



- Why Z+jet?
- Z+jet is predominantly sensitive to light quark jets


Z+jet

- Why Z+jet?
- Z+jet is predominantly sensitive to light quark jets
- Nearly all other hadronization studies at LHC measure inclusive jets, which are sensitive to predominantly gluon jets



Z+jet

- Why Z+jet?
- Z+jet is predominantly sensitive to light quark jets
- Nearly all other hadronization studies at LHC measure inclusive jets, which are sensitive to predominantly gluon jets
- Opportunity to study light quark vs. gluon:
 - Hadronization dynamics
 - Jet properties

Observables

- Measure hadronization observables in two dimensions
 - Longitudinal momentum fraction z
 - Transverse momentum j_T
 - Radial profile r (transverse)
- Reminder each of these observables is for a single hadron within the jet

•
$$x_E$$
 defined as $\frac{p_T^{trig} \cdot p_T^{assoc}}{|p_T^{trig}|^2}$