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Introduction

Medium Response Effects on Jets

QGP medium ® Jet-induced excitation of medium

- Transport energy and momentum
recelived from jet as wakes

- Modify particle emission around et

® Particles from wakes

- Jet correlated, cannot/should not be
subtracted
- Affect structures inside/around jet

Angular Structure
Momentum Structure
Hadron Species

Hard scattering
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Introduction

Motivations

® Models to describe jet-induced excitation of medium
- Extension from jet side: weak coupling, scatterings based on pQCD

- Extension from medium side: strong coupling, hydrodynamics

® Background medium flow effect
- Wakes induced as medium response evolve In an expanding fluid
- How can wakes’ contribution in jet be affected”?
- Different effects in different models for medium response”?
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Models

1. Weakly-coupled Description: Recolls

Zapp, Krauss, Wiedemann ('13), Wang, Zhu(13), Luo, et al.(15,18), Park, Jeon, Gale(18), Cao, Majumder (18)

IN-meaium

® Recolls
- Medium partons kicked out by jet parton
- Propagate as a parton in jet shower

- Wakes Induced by successive scatterings

® Hole: Picked up energy and momentum

- Sampled from thermal medium
- Freestreaming

- Subtracted from final signal

dp" dp" dp"

0| A - do

signal jet shower hole




Models

IN-meadium

2. Strongly-coupled Description: Hydro Response

® Diffusion into the medium

- Soft partons
(E

parton "~ typical energy scale in thermal medium)

- Holes’ energy and momentum
Model:  Causal Diffusion Equation

® Evolution as part of bulk medium

- Flow excited by diffused jet momentum
- Jet-correlated particle emission from medium

Model:
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Models

IN-meadium

2. Strongly-coupled Description: Hydro Response

® Diffusion into the medium

- Soft partons
(E

parton ~ typical energy scale in thermal medium)

- Holes’ energy and momentum
Model:  Causal Diffusion Equation

=) [Source Profile for Fluid

® Evolution as part of bulk medium

- Flow excited by diffused jet momentum
- Jet-correlated particle emission from medium

Model:

» Hydrodynamic Response



Models

2. Strongly-coupled Description: Hydro Response

® Conventional hydrodynamic equation

%
H Tllrlled(x) o

T . energy-momentum tensor of medium fluid

med

- Energy momentum conservation in medium fluid

® Hydrodynamic equation with source term

e.g.) YT, Chang, Qin (17,19), Chen, Luo, Cao, Pang, Wang (18)

VﬂT Illllyed(x ) = Jet(x)

Jfé . Incoming four-momentum density due to jet propagation (source term)

- Medium fluid evolution with energy-momentum deposition
- No distinction between soft part of jets and the bulk medium



Models

2. Strongly-coupled Description: Hydro Response

® Conventional hydrodynamic equation

ﬂTrl:;d(x) o

T . energy-momentum tensor of medium fluid

med

- Energy momentum conservation in medium fluid

® Hydrodynamic equation with source term

e.g.) YT, Chang, Qin (17,19), Chen, Luo, Cao, Pang, Wang (18)

VﬂT f:;d(x ) = Jet(x)

Jj’é . Incoming four-momentum density due to jet propagation (source term)

edium fluid evolution with energy-momentum deposition
No distinction between soft part of jets and the bulk medium

Modeled with Causal Diffusion Equation




Models

2. Strongly-coupled Description: Hydro Response

® Energy-momentum deposition ® Causal source profile
- Soft partons - Relativistic diffusion equation
- Holes’™ energy and momentum 0 0> .
— + T, — Daie V" | J ) = 0
N ot ot
E <E_ P
N4 with initial condition

J (= tyepy X) = Py 6V (F = ¥ gp)

d :
N ) Eclftp Ji (¢ ~ 4, X)

Parameters

I - cAt

E‘jﬁf: Energy scale for in-medium thermalization D 4 Diffusion coefficient

At: Timescale for in-medium thermalization Tq;er- DElaxation time in diffusion
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Models

2. Strongly-coupled Description: Hydro Response

® Energy-momentum deposition ® Causal source profile

- SOoft partons
- Holes’ energy and momentum

- Relativistic diffusion equation

o 0* 5| .,
— + Tgisg— — Dagiee V" [ 7 (X) =

2
5 < pdep 0,4 ot
pu cut | - .
—pt . with initial condition
_pF ; o A= Loy ) = Py SOF = X gep)

. J; =1+ At,x)

—-/‘\E<Efuetp Jit ~ 4, x) ' o Y
- cAt

Parameters

Egl‘itp: Energy scale for in-medium thermalization

At: Timescale for in-medium thermalization

D 4;¢¢: Diffusion coefficient

Tq;er- DElaxation time in diffusion




Models

2. Strongly-coupled Description: Hydro Response

- Jet propagation in a medium fluid with static uniform initial profile




Models

2. Strongly-coupled Description: Hydro Response
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Simulations and Results



Simulations and Results * Majumder(13), Kordell, Majumder(17),
Cao, Majumder(17)

SimUIation Setup: Jet T Wang, Znu(13), Luo, et al.(15,18)

Cao, etal.(16,17), He, et al.(18)

® Single jet shower propagation in a medium

- Start with a single parton with a fixed energy E£; ..= 140 GeV
- Shower evolution oy MATTER +LB TJf N JETSCAPE serscare colaboration (18)

- 2 different models for medium response for comparison
- Jet interacts with QGP medium with 7" > 160 MeV upto f = 8 cm

Weakly-coupled: Recolls Strongly-coupled: Hydro Response

Trelale fm, Ddlff=06 fm, tth: 15 fm for diffusion 1 1



Simulations and Results

Simulation setup: Hydro Part Contribution

® Estimation of hydro response contribution
- |deal (theoretically defined) background subtraction

dp"

do

signal

dp"

do

shower

+

dp*
do

med.
w/ jet

dp*

do

med.
w/o jet

- 2 different ways to calculate hydro contribution

w/o Particlization

- Treat fluid elements as particles

1 Uy low

dVv

S
(prlned _ TIlIIEd)

I pmeddV

w/ Particlization (Cooper-Frye)

- Consider thermal distribution in fluid elements

dVv

1 Uglow

12
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Simulations and Results

Simulation setup: Flow in the medium

® 3 different configurations for an ideal fluid medium

- Brick, medium with uniform static initial condition

- Expanding fluid with initial 3-D Gaussian energy density profile

- Medium evolves upto f = 10 fm

(b) Expanding, Outward

- No Flow - Following Flow

?
X :

T — 0.25 GEV Tcenter — O°S GeV

(c) Expanding, Inward

- Opposing Flow

T

center

= (0.5 GeV

13



Simulations and Results

Results: (a) Brick

® Angular Structure of Jet T
- Jet energy and momentum «
“ dE O dp
E 0 — ' — ! a
(@) Lda 0| , P.(0) }de g
signal 0 signal
- Detailed sulbstructure
o) 1  dE o) 1 dP,
) . . . . PE) = E0=0.4) do ot %) = p0=04) do .
150
_——— - Widely spreading flow as hydro response (strong)
> .
{B 100 L
= 4
— = Strong, particlized ‘ ’
A OV - Strong ) ¢ 4
= = Weak Jet
= \/acuum & >
l l l ’ ‘
0. 0.5 1.0 1.5 Wo—
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Simulations and Results

e .

=== Strong, particlized
== Strong

= = Weak

= \/gcuum

0.5 1.0 1.5

0.

Results: (a) Brick

® Angular Structure of Jet <_T

- Jet energy and momentum

0 0
dE d
E®) = Ide' | P@®) = [da' Px
o do’| do’
signal 0 signal
- Detailed substructure
o 1 dE o 1 dP
PEY) = E0=04) do ot %) = p0=04) do .

- Widely spreading flow as hydro response (strong)

- Backward suppression due to particlization (strong)

Enhancement

-----
......
.* ‘e
-

No Flow

‘O

e
o Yo
‘e

Suppression 14



Simulations and Results

Results: (a) Brick

® Angular Structure of Jet T
- Jet energy and momentum
0 0
dE dp
E@) = | do’ : — -
) L | re=[w
signal 0 signal
Detalled substructure
o) 1  dE o) 1 dP,
0 . . . . PEY) = E0=0.4) do ot P = p0=0.4) do .
150 F
_p——— - Widely spreading flow as hydro response (strong)
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S% 5 = Strong, particlized
Q. == Strong . /
" yeak dp* B dp* dp* ; /I
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%. 0.5 1.0 1.5 signal jet shower hole _—— — 14
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Simulations and Results

Results: (b) Expanding, Outward
150} ® Angular Structure of Jet <_T

- Jet energy and momentum
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Simulations and Results
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Simulations and Results

Results: (c) Expanding, Inward

W ® Angular Structure of Jet |
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Simulations and Results

Results: (c) Expanding, Inward
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Simulations and Results
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Simulations and Results

® Angular Structure of Jet Mass
0 dp*
M%) = P{O)P0), P"©) = Idﬂ’ P
o do |
signal
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- More prominent bump structures for the cases with the bric
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< and
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mentum transfer)
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Summary

® Medium response to jet propagation in QGP fluid

- [ransport energy and momentum as wakes by medium constituents
- [reated as part of jets observed In heavy ion collisions

- Weakly coupled description: Recoll
- Strongly coupled description: Hydro response (hydro+causal source)

® Background flow effect with medium response

- Significant effect for both recoil evolution and hydro response

- Clarify the difference between strongly and weakly coupled description
(Stronger effect for hydro response)

® Future outlook
- Full simulations with realistic configurations for heavy ion collisions
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