Self-correlations in fluctuation studies of heavy ion collisions

Aritra De

19 March 2020

UNIVERSITY OF MINNESOTA Driven to Discover®

3rd JETSCAPE Winter Workshop 2020

A. De, C. Plumberg and J. I. Kapusta, arXiv:2003.04878 [nucl-th]

A very short introduction to Quark Gluon Plasma

- If we subject the protons and neutrons residing inside the nucleus to sufficiently high temperature, the quarks and gluons get deconfined and form a thermalized state called quark-gluon plasma (QGP).
- QGP is believed to have existed during the early universe.



Electric charge diffusion in QGP

- Hydrodynamics involves study of conservation equations for energy-momentum, electric charge, baryon charge etc.
- $J_Q^{\mu} = nu^{\mu} + \Delta J^{\mu} + I^{\mu}$ *n* is the proper charge density, ΔJ^{μ} is viscous correction and I^{μ} is the stochastic noise.
- Consider the case of white noise and ordinary diffusion equation.

•
$$\left(\frac{\partial}{\partial t} - D\nabla^2\right) n = 0$$

• The 2-point function of white noise (Fluctuation-Dissipation Theorem) [White noise]

$$\langle I^{\mu}(x_1)I^{\nu}(x_2)\rangle = 2\sigma_Q T h^{\mu\nu}\delta^4(x_1-x_2)$$

• The ordinary diffusion equation leads to an infinite speed of signal propagation.

•
$$\left(\frac{\partial}{\partial t} - D\nabla^2 + \tau_Q \frac{\partial^2}{\partial t^2}\right) n = 0$$
. This is called the Catteneo equation.

- Finite signal propagation speed of $v_Q = \sqrt{\frac{D}{\tau_Q}}$.
- Now the noise function becomes [Colored noise]

$$\langle I^{i}(x_{1})I^{j}(x_{2})\rangle = \frac{\sigma_{Q}T}{\tau_{Q}}\delta^{3}(\vec{x}_{1}-\vec{x}_{2})e^{-\frac{|t_{1}-t_{2}|}{\tau_{Q}}}\delta_{ij}$$

Stochastic Differential Equations

- Bjorken coordinates $\tau = \sqrt{t^2 z^2}$ and $\xi = \tanh^{-1}(\frac{z}{t})$ in 1+1D.
- The noise part of the current is

$$I^0 = s(au) f(\xi, au) \sinh \xi$$
 $I^3 = s(au) f(\xi, au) \cosh \xi$

f is dimensionless and is the fluctuating part.

- We use the quantity $X = \tau \delta n$ for two-point correlation in δn .
- The charge conservation equation is $\partial_{\mu}J^{\mu}_{Q} = 0$ where $J^{\mu}_{Q} = nu^{\mu} + \Delta J^{\mu} + I^{\mu}$.

$$\left(\frac{\tau}{D\chi T} + \tau_Q \frac{\partial}{\partial \tau} \left(\frac{\tau}{D\chi T}\right)\right) \frac{\partial X}{\partial \tau} + \frac{\tau_Q \tau}{D\chi T} \frac{\partial^2 X}{\partial \tau^2} - \frac{1}{\tau\chi T} \frac{\partial^2 X}{\partial \xi^2} + \left(\frac{\tau s}{D\chi T} + \tau_Q \frac{\partial}{\partial \tau} \left(\frac{\tau s}{D\chi T}\right)\right) \frac{\partial f}{\partial \xi} + \frac{\tau_Q \tau s}{D\chi T} \frac{\partial^2 f}{\partial \xi \partial \tau} = 0$$

• For the case $au_Q = 0$ (white noise), this equation becomes

$$\frac{\partial X}{\partial \tau} - \frac{D}{\tau^2} \frac{\partial^2 X}{\partial \xi^2} + s \frac{\partial f}{\partial \xi} = 0$$

The Objective : Calculation of effect of hydrodynamic fluctuations on the final particle correlations in the detectors.

The Procedure : Simulating the stochastic hydro equations to calculate the charge fluctuations and calculating the charge balance functions.

Discrete lattice with noise

These equations are coupled stochastic differential equations (SDEs).First we set up white noise on a discrete lattice.

$$f \sim \mathcal{N}\left(0, \frac{1}{\sqrt{\mathsf{grid}\mathsf{-size}}}
ight) \Rightarrow \langle f_i f_{i'}
angle = \frac{1}{\mathsf{grid}\mathsf{-size}} \delta_{ii'}$$

Figuring out derivative of white noise on a lattice.

$$\langle f(x_i)f'(x_{i'})\rangle = \frac{\delta_{i+1,i'} - \delta_{i,i'}}{\Delta x^2}$$
$$\langle f'(x_i)f'(x_{i'})\rangle = -\frac{\delta_{i,i'+1} + \delta_{i,i'-1} - 2\delta_{i,i'}}{\Delta x^3}$$

Figuring out integration of white noise on a lattice.

$$\left\langle \int_{z_i}^z dz' f(z') \int_{z_i}^z dz'' f(z'') \right\rangle = (z - z_i)$$

Analytical solution to the white noise SDE

The white noise SDE is

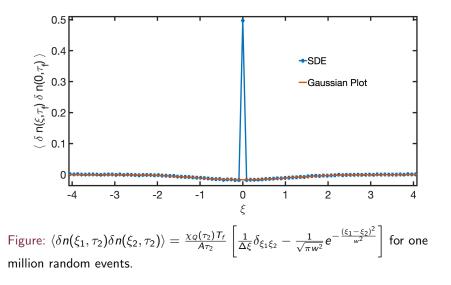
$$\frac{\partial X}{\partial \tau} - \frac{D}{\tau^2} \frac{\partial^2 X}{\partial \xi^2} + s \frac{\partial f}{\partial \xi} = 0$$

The two-point correlation for the noise fluctuation which is a solution of this SDE in our discretized system turns out to be (Kapusta,Plumberg, 2018)

$$\langle \delta n(\xi_1, \tau_2) n(\xi_2, \tau_2) \rangle = \frac{\chi_Q(\tau_2) T_f}{A \tau_2} \left[\delta(\xi_1 - \xi_2) - \frac{1}{\sqrt{\pi w^2}} e^{-\frac{(\xi_1 - \xi_2)^2}{w^2}} \right]$$

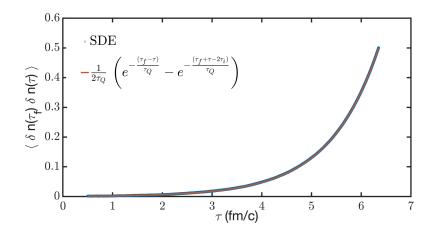
where $w^2 = 8D_Q(\frac{1}{\tau_i} - \frac{1}{\tau_f})$ and A is the transverse area of the Bjorken system. In our discrete lattice, what we expect is:

$$\langle \delta n(\xi_1,\tau_2) \delta n(\xi_2,\tau_2) \rangle = \frac{\chi_Q(\tau_2) T_f}{A \tau_2} \left[\frac{1}{\Delta \xi} \delta_{\xi_1 \xi_2} - \frac{1}{\sqrt{\pi w^2}} e^{-\frac{(\xi_1 - \xi_2)^2}{w^2}} \right]$$

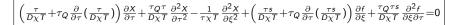


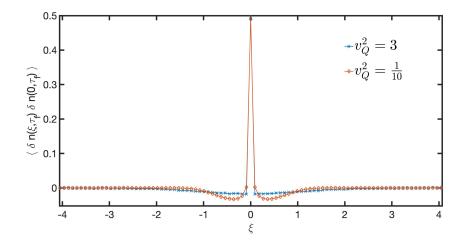
Colored noise

• We solve the Langevin equation. $f + \tau_Q \frac{\partial f}{\partial \tau} = \zeta$



Solution of Catteneo noise SDE





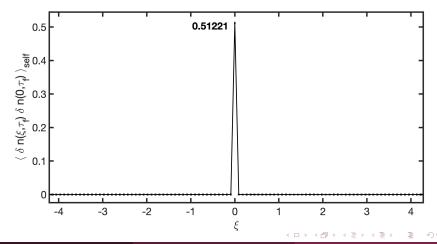
Aritra De

Self-correlations in HIC hydrodynamics

19 March 2020 11 / 18

Self-correlations for white noise

The Self-correlations are trivial for the white noise case. It is a Dirac-delta function with the expected amplitude $\frac{\chi_f T_f}{\tau_f \Delta \xi} = 0.5144 \text{ MeV}^3 \text{ fm}^{-3}$.



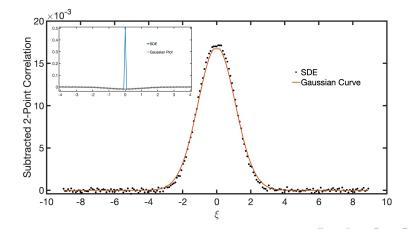
Aritra De

Self-correlations in HIC hydrodynamics

19 March 2020 12 / 18

Subtracted correlation function for white noise

$$\langle \delta n(\xi_1,\tau_2) \delta n(\xi_2,\tau_2) \rangle = \frac{\chi_Q(\tau_2) T_f}{A \tau_2} \left[\frac{1}{\Delta \xi} \delta_{\xi_1 \xi_2} - \frac{1}{\sqrt{\pi w^2}} e^{-\frac{(\xi_1 - \xi_2)^2}{w^2}} \right]$$

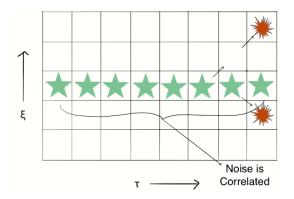


Aritra De

Self-correlations in HIC hydrodynamics

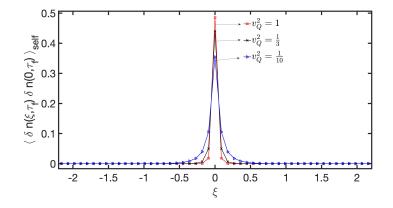
19 March 2020 13 / 18

Definition of self-correlation



The definition of self-correlation can be interpreted as the correlation of a charge fluctuation generated in ξ_1 at final time τ_f with another charge fluctuation generated at the same ξ_1 but at a previous time and hence has traveled to a different ξ_2 at τ_f .

Self-correlations for colored noise



 $\langle \delta n(\xi_1, \tau_f) \delta n(\xi_2, \tau_f) \rangle_{\text{self}}$

$$=\frac{\tau_f}{D_Q}\int\frac{dk}{2\pi}e^{ik(\xi_1-\xi_2)}\int\frac{d\tau''}{\tau''}\frac{\tilde{G}(-k,\tau_f,\tau'')}{ik}N(\tau_f,\tau'')$$

Charge balance functions

• The balance function measures the difference in conditional probability of finding a particle of opposite charge versus a particle of same charge given a charged particle in a different fluid cell. The formula for calculating the balance function in our case is

$$B(\Delta y) = \frac{\langle \delta\left(\frac{(dN_{+}-dN_{-})}{dy_{1}}\right) \delta\left(\frac{(dN_{+}-dN_{-})}{dy_{2}}\right) \rangle}{\langle \frac{(dN_{+}+dN_{-})}{dy} \rangle} = \frac{dA\tau_{f}T_{f}}{4\pi^{2}}\frac{C(\Delta y)}{Q(\frac{m}{T_{f}})}$$

Here $B(\Delta y)$ is the balance function and $C(\Delta y)$ is the charge correlation in rapidity y

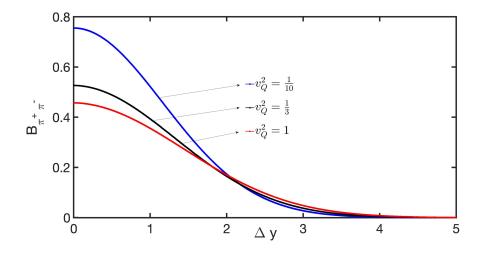
$$C(\Delta y) = \int d\xi_1 \int d\xi_2 F_n(y_1 - \xi_1) F_n(y_2 - \xi_2) C_{nn}(\xi_1 - \xi_2, \tau_f)$$

 $F_n(x) = \frac{1}{\chi_Q \cosh^2 x} \Gamma(3, \frac{m}{T_f} \cosh x)$ is a thermal smearing function and $Q(\frac{m}{T_f})$ is constant for a hadron.

19 March 2020 16 / 18

Charge balance functions for pions with different v_Q

The width of the balance function denotes the diffusion distance.



- Numerical simulation of the white noise and colored noise SDEs.
- Physical interpretation of the self-correlations in the case of colored noise.
- Numerical prescription for cancelling out the self-correlations in a hydro simulation in the presence of Catteneo noise. This prescription can be straightforwardly extended to the case of Gurtin-Pipkin noise.
- The pattern of balance functions for the various values of v_Q matches expectations.
- The results that we get from this exercise on a fairly simple model can also be used to benchmark results from other more involved hydrodynamic simulations in 3+1 D like MUSIC.

Thank You for listening!