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Our project
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Our project

To get both hydrodynamic IS and initial hard partons from EPOS3 (currently),
make hydrodynamic and jet parts talk to each other, add hadronization scheme

and jet finding.
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EPOS initial state
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Parton-Based Gribov-Regge
Theory

H. J. Drescher, M. Hladik, S. Ostapchenko,

T. Pierog, K. Werner, Phys. Rept. 350, 93,

2001

Pomeron = parton ladder,
treated as a kinky string.

Spacelike cascades including Born process in the EPOS IS provide partons with all
pT which are further separated into core and corona.

The IS produces multiple hard partons in each (central) Pb-Pb collision!
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Hydrodynamic background

Event-by-event initial state from EPOS.

Equation of state: Laine & Schroeder ’06, compartible with s95p-v1.2 EoS.
M. Laine, Y. Schroeder Phys. Rev. D73 (2006) 085009

3+1 dimensional viscous hydrodynamics:

T µν = (ε + p)uµ uν − p ·gµν +π
µν

∂;ν T µν = 0, ∂;ν Nν = 0

< uγ
∂;γ π

µν >=−πµν −π
µν

NS

τπ

− 4
3

π
µν

∂;γ uγ

solved with vHLLE code, Comput. Phys. Commun. 185 (2014), 3016
https://github.com/yukarpenko/vhlle
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Time-like parton shower

Monte Carlo simulation of DGLAP equations for a parton shower between
virtuality scales Q↑ (from Born process in EPOS) and Q↓ = 0.6 GeV.
Core algorithm made by Martin Rohrmoser

Qmax~pT

Q0~mq,g

Medium modified radiation (splittings) a là YaJEM: dQ2

dt =+q̂R(t,x)

Collisional energy loss: longitudinal drag
d p‖
dt =−A(t,x)

Collisional energy loss: transverse kicks ∆p⊥ = n⊥
√

q̂C ·∆t

Mean lifetime of a parton between the branchings is ∆t = E/Q2.

! Medium effects in the model will be updated soon.
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Jet reconstruction and jet overlap

In the rest of the talk:

medium effects are switched off

there are no medium partons/hadrons
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Jet reconstruction
A current shortcut:
Final state of a jet (partons) → no hadronization → jet finding.
Jet finding: vanilla FASTJET 3.3, anti-kT algorithm
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The artefacts
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‘runaway’ jet partons are not clustered with the rest (loss, ∆p⊥ < 0)

partons from neighbouring jets are clustered together (gain, ∆p⊥ > 0)
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“Jet purity”, noncentral PbPb

We define it as a leading fraction of reconstructed jet momentum coming from an
underlying simulated jet.
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no medium modification, 45-55% PbPb at 2.76 TeV
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“Jet purity”, central PbPb
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no medium modification, 0-5% PbPb at 2.76 TeV

about 1/3 of the reconstructed jets (or simply jets) have various contrbutions
to their momentum from jet overlap.
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“Jet purity”, jet p⊥ and R dependencies

Left: P(purity > x) at different jet p⊥
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Right: P(purity > x) for different R
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no medium modifications, 0-5% PbPb at 2.76 TeV

jet cone size in FASTJET

R=0.3
R=0.4
R=0.5

harder jets are more collimated, so less overlap with neighbours

with larger jet cone one picks up more neighbouring partons
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Jet shape
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The core of the jet (r < 0.2) has negligible contribution from the jet overlap.

For the periphery of the jet the jet overlap starts to be important.
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Jet shape
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The effect goes up to 20% at the boundary of the jet cone.
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Same thing for R = 0.5 cone size
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As the jet cone extends further in r, the contrbution from jet overlap grow
further.
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Jet p⊥ dependence of the effect
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The jet shape contamination by overlapping jets persists as jet p⊥ increases!

Iurii Karpenko, Jet overlap in heavy ion collisions 14/17



Gain and loss to the reconstructed jet p⊥
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gain
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For smaller R, more jet momentum is lost (outside of the cone).

The larger R, more jet momentum is gained (from the neighbouring jets).
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How do the experiments deal with it

CMS performs a background subtraction in a statistical way based on
PYTHIA+HYDJET simulations - which also removes the jet overlap effects.
⇒ It should remove the overlap effect as the background jets are not
correlated with the jet of interest.
CMS Collaboration, JHEP 1805 (2018) 006

ALICE reports the ratio of actual jet shape in PbPb events relative to the
shape of (vacuum) PYTHIA jets embedded into actual PbPb events, as a
proxy for the PbPb/pp ratio.
⇒ It should remove the overlap effect as well, provided that PYHIA gives
correct shape of vacuum jets.
ALICE Collaboration, Phys.Lett. B796 (2019) 204-219

In order to have apple-to-apple comparison
with the experiment, we should:

I Either degrade the model so that we have
solitary jets

I Or keep all jets together but add all the
machinery (medium hadrons, background
subtraction)
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Summary

EPOS3 initial state produces multiple hard partons = jet seeds in each
central Pb-Pb event at the LHC energies

This creates the effect of jet overlap in momentum space once we attempt to
find all of the jet at once with FASTJET

The effect influences the apparent jet shape.

As experiments correct for that, the most practical solution is to treat the
modelled jets separately.
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