

Charged Particle Momentum Resolution of the sPHENIX TPC

Henry Klest

How does a Time Projection Chamber work?

Add a magnetic field and you've got a detector

sPHENIX Physics Goals + the TPC's Role

Jet Structure

Fragmentation functions at High and Low z

- □ Low z → large acceptance, and $\frac{\sigma_p}{p} \le 1\% * p$
- □ High z → momentum resolution $\frac{\sigma_p}{p} \le .2\% * p$ for ~40 GeV/c charged particle

Jet Correlations

Tracking coverage of full azimuth, |η| < 1.1
 High jet tracking efficiency

Parton Energy Loss

Precise position and momentum measurement of tagged heavy flavor jets

Quarkonium Spectroscopy

Upsilon, J/Psi daughter electrons measured with invariant mass resolution ~125 MeV

Position to momentum resolution

SPHENIX TPC has 48 pad rows in r – ideally yields 48 precise measurements of position

- □ Due to size constraints, L and $N_{pad rows}$ are smaller than STAR, ALICE, difference compensated in B, σ_x
- sPHENIX TPC will have ~400 tracks/event in min bias compared to ~900 at ALICE

 $p_T \text{ error} \propto \text{ error in}$ measurement of s (Sagitta of curve)

TPC Design Considerations

High Position Resolution

□ 1.4T B-field improves high-p_T momentum resolution, significantly decreases transverse diffusion in gas, σ_x strong function of B □ Must combat space charge distortion of tracks → gas selection, laser calibration, ion backflow suppression

High Statistics

Maximize statistics of rare probes

 $\label{eq:streaming} \texttt{Streaming readout and ungated gain stage} \rightarrow \textbf{no dead time!}$

□ Rate capability increased by a factor of 10 over gated TPCs

Low Material Budget

Minimize multiple scatterings/photon conversions

Size

Allow room for calorimetry inside magnet

Takes advantage of most uniform section of magnetic field inside solenoid

Readout Planes

sPHENIX TPC Design

- 20 cm < r < 78 cm, |η| <1.1 (2.11 meters long)</p>
 - Outer radius smaller than ALICE inner radius!
- □ 1-meter drift length in Ne:CF4 50-50 mixture
- Metallized central "membrane" held at 40 kV, drift field of 400 V/cm
- Utilizes 4 stacked gas electron multipliers (GEMs) to produce signal from single ionized electrons, same as ALICE upgrade

Space Charge Correction

- Want to measure space charge distortions to apply correction
 - Transient distortions from varying track density on top of static distortions
- Solid gold-coated central membrane, with aluminum stripes
- Diffuse laser inside TPC shining on Al produces electrons via photoelectric effect
 - □ No e⁻ from gold
 - □ Know where the e⁻ originated
 - □ Know where it ended up from normal readout
 - Can build a (time-dependent!) map of distortions

30 ⁰⁰

-20

-20 (Z [cm]

Readout + Frontend electronics

Test Beam Results

- Prototype TPC introduced to 120 GeV/c proton beam at FNAL
- 40-cm one sided TPC with one full readout module (4 GEMs + pad plane + real front-end electronics)
- 3-D position controlled to mimic tracks at different angles, drift lengths
- Caveats: no space charge, no multiple scattering

Test Beam Results (Cont.)

- Tracks with shorter drift will naturally have higher position resolution due to decreased diffusion in gas
- \Box Integrated over N_{ch} and η , average e⁻ drift length is 75 cm, position resolution is 115 µm, Upsilon invariant mass resolution of TPC alone is ~100 MeV
- Preliminary result corresponds to a momentum resolution of $\frac{\sigma_p}{p} \approx .2\% * p$

TPC meets sPHENIX physics needs!

SPHEN

Decreased L improves σ_{x}

2

Thanks for listening!

Backup

Parameters	sPHENIX (Au+Au 200 GeV)	ALICE (Pb+Pb 5.5 TeV)	SPHEND
dN/dy (Minbias)	180	500	
η coverage of TPC # of tracks in TPC	$ 2.2(\eta < 1.1)$	$1.8 (\eta < 0.9)$	
 Effective # of tracks in TPC	570	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(accounted for <i>r</i> -dep. η coverage change)	560	1690	
Effective factor for track # increase for accounting albedo background	2	2	
# of measurements in <i>r</i>	40	159	
# of samples in ϕ	3	2	
# of samples in timing	5	10	
# of bits of each sample	10	10	
Data volume increase fac- tor by SAMPA header	1.4	1.4	
Data volume/event (bits)	9.41×10 ⁶	1.50×10^{8}	
Data volume/event (bytes)	1.18×10^{6}	1.88×10^{7}	
Collision rate [kHz]	100	50	
Total data rate (bits/sec)	9.41×10^{11}	7.52×10^{12}	
Total data rate (bytes/sec)	1.18×10^{11}	9.41×10^{11}	

<

 $\mathbf{\bullet}$

.000

.006

.006

.006

.006

006

Laser Calibration Pattern

.006

006

.

	Ne:CF4 - 90:10	Ne:CF4 - 50:50	Comment
$v_{drift} \left(\frac{\mu m}{ns}\right)$	78	80	Improvement
$D_{Transverse}\left(rac{\mu m}{\sqrt{cm}} ight)$	65	40	Improvement
$D_{Longitudinal}\left(rac{\mu m}{\sqrt{cm}} ight)$	160	110	Improvement
$N_{primary} \left(\frac{e}{cm}\right)$	16	31.5	Improvement
$N_{total} \left(\frac{e}{cm}\right)$	48.7	71.5	Improvement
Space Charge (arb)	1.00	1.42	Max 3mm → 4.25mm Likely Tolerable

Z-B Kang, J Reiten, <u>I Vitev</u>, B Yoon, "Light and heavy flavor dijet production and dijet mass modification in heavy ion collisions", Phys. Rev. D99 034006 (2019)

strong coupling to the medium near $T_{r} \Leftrightarrow$ pronounced b-dijet effect at RHIC

SPH