

Photon-jet correlations in p-p and A-A collisions

Chathuranga Sirimanna

3rd JETSCAPE workshop, March 20th, 2020

Outline

- JETSCAPE framework
- Simulating jet evolution with JETSCAPE framework
- Leading hadron and jet
- Photons
- Summary

JETSCAPE framework

- Jet Energy loss Tomography with a Statistically and Computationally Advanced Program Envelope
- General, modular and extensive framework
- JETSCAPE is public for almost 3 years
- JETSCAPE 3.0 publicly available at https://github.com/JETSCAPE

JETSCAPE framework

JETSCAPE

• ASCII, Gzip, and HepMC output formats

- Multi-stage jet evolution
- Different stages depending on the virtuality, Q and energy, E of the partons

 No single model can describe all stages of jet evolution

JETSCAPE framework: Multi-stage evolution

Virtuality Separation Scale: Q₀

Switching between modules parton by parton depending on the virtuality and energy

Large Q: $Q > Q_0$ Small Q: $Q < Q_0$

• MATTER (Majumder(13), Kordell, Majumder(17), Cao, Majumder(17))

- Small Q, Large E: Scattering driven mostly by medium effects (Transport, AMY, HT)
 - LBT (Wang, Zhu(13), Luo, et al.(15,18),Cao, et al.(16,17), He, et al.(18))
 - MARTINI (Schenke, Gale, Jeon(09), Park, Jeon, Gale(17, 18))

- Small Q, Small E: Nearly thermal, strongly coupled approach (AdS/CFT)
 - AdS/CFT (Chesler, Rajagopal(14, 15), Pablos, et al.(15, 16, 17), and others)

Simulating jet evolution with JETSCAPE framework

- Settings used in our simulations
 - PP baseline: MATTER vacuum shower
 - Common settings for PbPb 2.76 TeV and 5.02 TeV
 - Virtuality separation scale, Q₀ = 2 GeV
 - Recoil ON in MATTER and LBT
 - Recoil OFF in MARTINI and AdS/CFT
 - Hadronization: Colored and Color randomized (Colorless) hadronization using Lund string model (Pythia8)
 - Event averaged hydro is used for 2.76 TeV
 - Event by event hydro profiles with reuse hydro is used for 5.02 TeV

Simulating jet evolution with JETSCAPE framework

- Initial hard scattering from Pythia with initial state radiation
- Trento (2+1) initial conditions
- MATTER, LBT and MARTINI (only for leading hadron and jet analysis) energy loss modules
- Event averaged hydro (2.76 TeV) and event by event hydro (5.02 TeV)
- Hadronization
 - Colored keep track of the color of partons throughout the shower
 - Color randomized No color information required, and randomly assign color at the time of hadronization

Leading hadron: 2.76 TeV

- JETSCAPE 1.0 2.76 TeV
- MATTER high virtuality partons
- LBT, MARTINI, AdS/CFT low virtuality partons
- Q_0 can be used to finetune the low p_T region

All module combinations can explain the data reasonably well compared to a given single module

CMS from Eur.Phys.J. C72 (2012)

Jet: 2.76 TeV and 7 TeV p-p

- JETSCAPE 1.0
- 2.76 TeV PbPb- used the same tune used for hadron spectrum
- MATTER + LBT Recoil on
- Reasonable description with data

CMS for 2.76 TeV from PRC 96, 015202 (2017) CMS for 7 TeV from PRD 87, 112002 (2013) ATLAS from EPJ C71, 1512 (2011)

Photons

- Prompt photons are produced directly in the hard sub-processes
- These prompt photons can be used to estimate the energy and the direction of jet initiating parton (before the energy loss) Calibrated probe of the QGP
- Isolation criteria is necessary to identify the prompt photons
- Isolated photons mainly consist of prompt photons

Photon Simulation

- Same set of parameters tuned for leading hadron and jet analysis were used
- an independent, parameter free verification of the multistage evolution
- Even though medium induced terms for energy loss is included in the framework, medium induced photon emission terms are not included in the Sudakov
- Photons included in the analysis
 - Photons from initial hard scattering (prompt photons)
 - Photons radiated from intermediate shower
 - Photons radiated by hadrons in the process of hadronization and final state hadronic radiation are included

Photon Results

JETSCAPE 1.0

Framework was not supported for photon propagation

Used hard photons directly from Pythia gun Low Statistics

Photon Results

- JETSCAPE 2.0 2.76 TeV and 5.02 TeV
- 2.76 TeV pp results only. Ongoing analysis for PbPb
 - Both photon-jet p_T imbalance and azimuthal correlation
- 5.02 TeV PbPb results with low statistics. Ongoing analysis with more statistics
 - photon-jet p_T imbalance
- Further examination with more statistics required

Photons: P-P 2.76 TeV

Gamma-Jet transverse momentum imbalance (Gamma-Jet Asymmetry)

CMS from CMS PAS HIN-13-006

- Mismatch with experimental data (0.25 to 0.8) may be due to NLO effects
- Look into different p_T^{γ} regions to understand the behavior
- Study other photon observables

CMS from CMS PAS HIN-13-006

Photons: P-P 2.76 TeV

Gamma-Jet Azimuthal correlation

CMS from CMS PAS HIN-13-006

Chathuranga Sirimanna, 3rd JETSCAPE workshop

Photons: A-A 5.02 TeV

Gamma-Jet transverse momentum imbalance (Gamma-Jet Asymmetry)

 $p_T^{jet} > 31.6 \ GeV; \ |\eta_{\gamma}| < 2.37$ (excluding the region $1.37 < |\eta_{\gamma}| < 1.52$); $|\eta_{Jet}| < 2.8$

Isolation cut (E < 8GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$

JETSCAPE

Summary

- JETSCAPE is a general, modular and extensive framework that can be used to simulate heavy ion collisions
- Multi-stage evolution can describe all the stages of jet evolution significantly better than single module evolution
- JETSCAPE can describe most of the observables by using the same set of parameters for different center of mass energy
- Photon observables an independent, parameter free verification of the multistage evolution

Future directions

- Pb-Pb analysis with higher statistics (5.02 TeV and 2.76 TeV) using JETSCAPE 3.0
- P-P analysis at 5.02 TeV with higher statistics using JETSCAPE 3.0
- More module combinations (MATTER+MARTINI, MATTER+AdS/CFT)
- More photon observables to better understand the limits of these module combinations

