

Parton Energy Loss in a Hard-soft Factorized Approach

Tianyu Dai¹, Steffen A. Bass¹, Jean-Francois Paquet¹, Derek Teaney²

¹Duke University ²Stony Brook University

This work is supported by NSF grant ACI-1550225 and DOE grant DE-FG02-05ER41367.

Tianyu Dai (Duke University)

- Hard-soft factorized model of parton energy loss
- Numerical implementation of the factorized model
- Parton energy loss at small coupling
- Parton energy loss at larger coupling
- Application: in-medium parton energy cascade

Hard-soft factorized model of parton energy loss

J. Ghiglieri, G. Moore, D. Teaney, JHEP03 (2016) 095

Weakly-coupled effective kinetic approach

- Perturbative parton-medium interaction
- Dynamics of quasiparticles are described by transport equations
- Energy gain and loss are naturally included

Leading-order realizations (e.g. MARTINI):

$$(\partial_t + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}}) f^a(\boldsymbol{p}, \boldsymbol{x}, t) = -\mathcal{C}_a^{2 \leftrightarrow 2}[f] \qquad -\mathcal{C}_a^{1 \leftrightarrow 2}[f]$$

Hard-soft factorization of energy loss

Interactions with the medium:

- Large number of soft interactions
- Rare hard scatterings

Parton energy loss factorized as hard interactions + diffusion process

Benefits of factorized transport model

- Systematically factorized soft and hard parton-plasma interactions
- Efficient and flexible stochastic description of soft interactions
- Diffusion process does not rely on the quasiparticle assumption
- Can be extended to next-to-leading order

Hard-soft factorization of energy loss

Hard 1 \leftrightarrow 2 Interactions - Large ω Interactions

Multiple soft interactions with the plasma induce the collinear radiation of a parton of energy ω .

Soft interactions are resummed to account for LPM effect.

• $\omega > \mu_{\omega}, \mu_{\omega} \lesssim T$

- Described with emission rates (obtained from AMY integral equations)
- Leading order calculation

Hard $\mathbf{2}\leftrightarrow\mathbf{2}$ Interactions

• Leading order vacuum pQCD matrix elements

• Neglect $\mathcal{O}(\frac{\mathsf{T}}{\mathsf{p}})$

Identity Preserving Soft Interactions - Diffusion

Number and identity preserving soft collisions are described stochastically with drag and diffusion.

$$\mathcal{C}^{\text{diff}}[f] = -\frac{\partial}{\partial p^{i}} \left[\eta_{\text{D}}(p)p^{j}f(p) \right] - \frac{1}{2} \frac{\partial^{2}}{\partial p^{i}\partial p^{j}} \left[\left(\hat{p}^{i}\hat{p}^{j}\hat{q}_{\text{L}}(p) + \frac{1}{2} \left(\delta^{ij} - \hat{p}^{i}\hat{p}^{j} \right) \hat{q}(p) \right) f(p) \right]$$

ã,

- Include both elastic and inelastic soft interactions
- Transport coefficients: pQCD
- Treated with Langevin model

Elastic interactions:

inelactic collision

ref: S. Jeon (OM 2017)

colligions

(1)

ω

Identity Non-preserving Soft Interactions - Conversion

- Change parton identity by conversion rate
- Suppressed by T/p

Soft fermion exchange w/ medium

Summary of the Treatments to Different Processes

If the division of the energy loss model is valid, energy loss should be **independent on the cutoffs** (in a reasonable range).

Tianyu Dai (Duke University)

Numerical implementation of the factorized model

Putschke, et al., arXiv:1902.05934 (2019). Dai, T., Bass, S. A., Paquet, J-F., & Teaney, D., arXiv:1901.07022.

Numerical Implementation

Reformulated energy loss model is **added as a separate external module** in a modified version of the public JETSCAPE2.0 code.

Tianyu Dai (Duke University)

JETSCAPE Workshop 2020 - Mar. 20th, 2020

JETSCAPE

Numerical Implementation

pcut : We only track hard partons with $p > p_{cut}$

Numerical vs analytical diffusion coefficients - coupling

Analytical diffusion coefficients:

$$\begin{split} \hat{q}_{soft}^{2 \rightarrow 2} &= \frac{g^2 C_R T m_D^2}{4\pi} \ln \left[1 + \left(\frac{\mu_{\tilde{q}_{\perp}}}{m_D} \right)^2 \right] \\ \hat{q}_{L,soft}^{2 \rightarrow 2} &= \frac{g^2 C_R T M_{\infty}^2}{4\pi} \ln \left[1 + \left(\frac{\mu_{\tilde{q}_{\perp}}}{m_{\infty}} \right)^2 \right] \\ \hat{q}_{L,soft}^{1 \rightarrow 2} &= \frac{(2 - \ln 2)g^4 C_R C_A T^2 \mu_{\omega}}{4\pi^3} \end{split}$$

Numerical diffusion coefficients:

$$\begin{split} \hat{q}_{soft}(p) &= \int_{0}^{\mu_{\tilde{q}_{\perp}}} d^{2}q_{\perp}q_{\perp}^{2} \frac{d\Gamma(\boldsymbol{p},\boldsymbol{p}+\boldsymbol{q},\mu_{\omega})}{d^{2}q_{\perp}} \\ \hat{q}_{L,soft}(p) &= \int_{0}^{\mu_{\omega}} dq^{z}(q^{z})^{2} \frac{d\Gamma(\boldsymbol{p},\boldsymbol{p}+\boldsymbol{q},\mu_{\tilde{q}_{\perp}})}{dq^{z}} \end{split}$$

Tianyu Dai (Duke University)

Numerical vs analytical diffusion coefficients - cutoff

Analytical diffusion coefficients assume: $\mu_{\omega} \ll T$ $\mu_{\tilde{q}_{\perp}} \ll T$

For valid diffusion process: $\mu_{\omega} \gg gT$ $\mu_{\tilde{q}_{\perp}} \gg gT$

Parton energy loss at small coupling

Tianyu Dai (Duke University)

Diffusion vs collision rate - 1 \leftrightarrow 2 process

energy distribution of a hard gluon propagating in a static medium when soft collisions treated with collision rate (MARTINI style) vs treated stochastically

Tianyu Dai (Duke University)

Diffusion cs collision rate - $\mathbf{2}\leftrightarrow\mathbf{2}$ process

energy distribution of a hard gluon propagating in a static medium when soft collisions treated with collision rate (MARTINI style) vs treated stochastically

Tianyu Dai (Duke University)

Hard-soft cutoff dependence of energy distribution

We check the dependence of the **single parton energy distribution** on the hardsoft cutoff at small coupling to validate the model.

Parton energy loss at larger coupling

Tianyu Dai (Duke University)

JETSCAPE Workshop 2020 - Mar. 20th, 2020

21/31

Diffusion vs collision rate - 1 \leftrightarrow 2 process

Consistency:

 $\circ \ \text{frequent soft 1} \leftrightarrow 2 \ \text{interactions}$

Diffusion vs collision rate - $\mathbf{2}\leftrightarrow\mathbf{2}$ process

Discrepancy:

 $\circ~$ not enough soft $2\leftrightarrow 2$ interactions

Diffusion vs collision rate - $\mathbf{2}\leftrightarrow\mathbf{2}$ process

Discrepancy:

 $\circ~$ not enough soft $2\leftrightarrow 2$ interactions

Hard-soft cutoff dependence of energy distribution

We check the dependence of the **single parton energy distribution** on the hardsoft cutoff at larger coupling to validate the model.

Application: in-medium parton energy cascade

Blaizot, Iancu, Mehtar-Tani. PRL111.5 (2013):052001. Mehtar-Tani, Y., & Schlichting, S. (2018). JHEP, 2018(9), 144.

In-medium gluon energy cascade - analytical approximation

Assumptions:

- independent successive branchings
- approximate inelastic differential rate valid in deep LPM region

Analytical distribution of gluons (Blaizot, lancu, Mehtar-Tani. 2013):

$$\begin{aligned} & x \frac{dN}{dx} = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi [\tau^2/(1-x)]} \\ & \text{where } x \equiv \omega/\text{E}_0 \text{ and } \tau \equiv \frac{\alpha_{\text{s}}N_{\text{c}}}{\pi} \sqrt{\frac{\hat{q}}{\text{E}}} t. \end{aligned}$$

 $\,\circ\,$ In the small-x region, the power-law spectrum xdN/dx scales as 1/ $\sqrt{x}.$

In-medium gluon energy cascade - numerical comparison

Assumptions:

- independent successive branchings
- approximate inelastic differential rate valid in deep LPM region

Analytical distribution of gluons (Blaizot, Iancu, Mehtar-Tani. 2013):

$$\begin{aligned} & x \frac{dN}{dx} = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi [\tau^2/(1-x)]} \\ & \text{where } x \equiv \omega/\text{E}_0 \text{ and } \tau \equiv \frac{\alpha_{\text{s}}N_{\text{c}}}{\pi} \sqrt{\frac{\hat{q}}{\text{E}}} t. \end{aligned}$$

- In the small-x region, the power-law spectrum xdN/dx scales as $1/\sqrt{x}$.
- The analytical solution is well-reproduced by the full QCD numerical model.

Energy loss model is reformulated as hard collisions+diffusion.

factorized interactions		identity preserving	identity non-preserving
soft interactions	small- $ ilde{q}_\perp$ elastic	diffusion processes	conversion rate
	small- ω inelastic		
hard interactions	large-angle elastic	vacuum matrix elements	
	large- ω elastic	splitting approximation	
	large- ω inelastic	AMY integral equations	

- Systematic factorization in the weakly-coupled limit
- Factorization still holds in phenomenological regime
- Factorized model is expected to be efficient and flexible

Outlook

- Make predictions with realistic hydrodynamic medium
- Apply data driven constraints on drag and diffusion coefficients
- Improve treatment of collinear emission angle
- Introduce the running coupling effect

Thanks to Jacopo Ghiglieri, Sangyong Jeon, Weiyao Ke, Chanwook Park, Yingru Xu for the useful discussion.

In-medium fermion number cascade

$$g \equiv x \frac{dN_g}{dx}, D_S \equiv \sum_{i=1}^{N_F} \left(D_{q_i} + D_{\overline{q}_i} \right)$$
$$\frac{D_S}{2N_f D_g} = \frac{1}{2N_f} \frac{\int_0^1 dz z \mathcal{K}_{qg}(z)}{\int_0^1 dz z \mathcal{K}_{gq}(z)} \approx 0.07$$

where \mathcal{K}_{ab} is the splitting function of $b \rightarrow a.$

In the small-x and large- τ region, the chemistry of fragments is determined by the balance of the g \rightarrow q \bar{q} and q \rightarrow qg processes. The ratio between quark and gluon number reaches to a constant constraint.

D

μ_{ω} Cutoff Independence - **Inelastic** Interactions Only

20 GeV gluon, $\alpha_{\rm S}$ =0.3, T = 300 MeV, infinite medium, τ = 1 fm/c

Tianyu Dai (Duke University)

$\mu_{\tilde{q}_{\perp}}$ Cutoff Independence vs. α_{s}

200 GeV gluon, T = 300 MeV, infinite medium, $\alpha_s^2 \tau$ = 0.3²fm/c, $\Lambda = \sqrt{3ET}$ Elastic interactions only:

Tianyu Dai (Duke University)

A Cutoff Independence - Elastic Interactions Only

200 GeV gluon, $\alpha_{\rm S}$ =0.3, T = 300 MeV, infinite medium, τ = 3fm/c, $\mu_{\rm \tilde{g}_{\perp}}$ = $2\sqrt{\rm gT}$

³ All the plats, include diffusion progessape Workshop 2020 - Mar. 20th, 2020

Preliminary Comparison with MARTINI - Elastic Only

200 GeV gluon 300 MeV medium elastic interactions only

MARTINI elastic:

- screened matrix elements
- no hard / soft separation
- equivalent to reformulated model in wQGP

MARTINI inelastic:

- running coupling effect
- no hard / soft separation

Back Up - Next-to-Leading Order Calculation

$$\begin{split} \mathcal{C} &= \mathcal{C}^{\text{large-angle}}(\mu_{\tilde{\mathsf{q}}_{\perp}}, \wedge) + \mathcal{C}^{\text{split}}(\wedge) + \mathcal{C}^{\text{large-}\omega}(\mu_{\omega}) + \mathcal{C}_{a}^{\text{diff}}(\mu_{\tilde{\mathsf{q}}_{\perp}}, \mu_{\omega}) \\ &+ \delta \mathcal{C}^{\text{coll}} + \delta \mathcal{C}^{\text{diff}} + \delta \mathcal{C}^{\text{conv}} + \delta \mathcal{C}^{\text{semi-coll}} \end{split}$$

Hard Thermal Loops correlators are simplified greatly when evaluated at lightlike separations.

Jet-particles propagate along the light cone: undisturbed plasma, statistical rather than dynamical

Back Up - Drag and Diffusion Coefficients

$$\begin{split} \hat{q} &= \frac{g^2 C_R T m_D^2}{4\pi} \ln(1 + (\frac{\mu_{q_{\perp}}}{m_D})^2) \\ \hat{q}_L^{elas} &= \frac{g^2 C_R T M_{\infty}^2}{4\pi} \ln(1 + (\frac{\mu_{\tilde{q}_{\perp}}}{M_{\infty}})^2) \\ \hat{q}_L^{inel} &= \frac{(2 - \ln 2)g^4 C_R C_A T^2 \mu_{\omega}}{4\pi^3} \\ \eta_D(p) &= \frac{\hat{q}_L}{2Tp} + \frac{1}{2p^2} (\hat{q} - 2\hat{q}_L) \end{split}$$

Diffusion vs collision rate - $2 \leftrightarrow 2$ process

