Open heavy-flavor and heavy-jet study from the LIDO transport model

Weiyao Ke

UCB & LBNL

In collaboration with Xin-Nian Wang, Wenkai Fan, and Steffen Bass.

JETSCAPE Workshop 2020, University of Tennessee Knoxville

- 1 Introduction to the open-heavy-flavor transport
- 2 What questions can be answered by studying heavy jet
- 3 Current status of the inclusive & heavy jet calculation from the LIDO model
- Summary and work in-progress

Transport of heavy quark

- Production from hard vertices.
- Flavor-tagged hadronization and decay channels.
- Hard-to-hard splitting under theoretical control.
- The interest: interaction between the heavy-quark and the deconfined QGP medium? Transport parameters D_s, \(\hat{q}, \cdots\).

Nuclear modification and momentum anisotropy

If we focus on inclusive production of a heavy-flavor particle.

Suppressed yield at fixed p_T .

Non-zero momentum anisotropy.

Bayesian extraction of transport parameter in a transport model

How does these observables converts into the knowledge of HQ-medium interaction?

Qualitatively:

- *R_{AA}*: energy-dependence of energy loss.
- High-p_T v₂: geometry (path) dependence of energy loss.
- Low-p_T v₂: need rather strong coupling to the medium so that charm meson can almost flow with the medium.

Quantitatively:

- Couple transport models to realistic medium evolution.
- Use Bayesian method to extract transport model parameters $(\alpha_s, \hat{q}, \cdots)$.
- Propagation of experimental / theory uncertainty.

A brief review of the LIDO linearized partonic transport model ¹

 Elastic process: small-angle diffusion plus large-angle collisions. Diffusion dynamics solved by a Langevin equation

$$\hat{q}_S \sim lpha_s C_R m_D^2 T \ln \left(1 + rac{Q_{
m cut}^2}{m_D^2}
ight) + \cdots$$

• Large-q processes treated in a linearized Botlzmann equation.

$$rac{dP}{dt} \sim \int_{Q_{
m cut}^2}^{6ET} rac{lpha_s m_D^2 T}{q^4} dq^2$$

• Interpolate between the two descriptions by tuning Q_{cut} .

¹PhysRevC.100.064911

A brief review of the LIDO linearized partonic transport model

- Medium-induced parton radiations.
- Implementation of LPM and finite size effect.

• Implementation well tested in simple medium.

What has been learned from Bayesian analysis on HF?

From calibration to open-heavy-flavor R_{AA} , v_2 ,

- ullet The temperature and momentum dependence of \hat{q} with uncertainty.
- The perturbative coupling strength $\alpha_s(Q,T)$ for radiative and large-q elastic processes.

Things remain to be improved / answered:

- To further reducing the uncertainty, it is useful to have a handle on the relative contribution from radiative v.s. elastic energy loss.
 - ▶ Elastic energy loss: $\Delta E/\Delta t \sim \hat{q}(E,T)/T$.
 - ▶ Radiative energy loss depends on both $\alpha_{s,rad}$ and $\hat{q}(E, T)$.
- Can we ask more details of the interaction beyond a \hat{q} number.
 - Diffusion dominated or large-q process dominated.

The tool to be examined: heavy flavor jet.

- 1 Introduction to the open-heavy-flavor transport
- 2 What questions can be answered by studying heavy jet
- 3 Current status of the inclusive & heavy jet calculation from the LIDO model
- Summary and work in-progress

Heavy-flavor – jet correlation

- The heavy flavor jet provides a preferred direction and hard scale of the hard event where the heavy quark is created.
- Energy-energy correlation: heavy-flavor jet fragmentation function.
- Angular correlation: heavy-flavor radial distribution around jet.
- Do they contain additional information on HF transport properties?

CMS-PAS-HIN-18-007

An ideal case: heavy-flavor correlation with its initial momentum

Before considering HF-jet correlation, investigate a simpler problem: **HF correlation with its initial momentum.**

- Initial charm quark momentum obtained form pythia.
- Medium: Pb+Pb 0-10% event-averaged hydrodynamics.
- Including hadronization effect.
- Compare the change in the distribution of $x = p_T^D/p_T^{c, \text{init}}$ and $\Delta r = \sqrt{(\phi_D \phi_c)^2 + (\eta_D \eta_c)^2}$

Initial charm-quark momentum is not an observable, but this shall provide insights on what information may / may not survive in HF-jet correlations.

12 / 21

Sensitivity to the relative contribution of elastic v.s. inelastic process

Red: Radiative energy loss only, Blue: Elastic energy loss only Both cause ~ 3.5 GeV loss in energy for considered p_T range.

Similar p_T correlations

Different angular correlations:

To cause similar energy loss, radiation is more collinear than elastic recoil.

This difference may survive in realistic HF-jet correlation to provide information on elastic v.s. radiative contribution.

Sensitivity to the nature of the elastic interaction

Red: large-q, Blue: diffusion.

Both cause ~ 5 GeV loss in energy for considered p_T range.

Very similar p_T correlations

Very similar angular correlations

Not likely to tell the nature of elastic collision from HF-jet correlation

- 1 Introduction to the open-heavy-flavor transport
- 2 What questions can be answered by studying heavy jet
- 3 Current status of the inclusive & heavy jet calculation from the LIDO model
- Summary and work in-progress

- Initialize all partons momentum from pythia.
- In-medium partonic transport, including hard recoil particles, $\alpha_s(\max\{Q, 2\pi T\})$.
- Soft recoil particles (E < 5T) and energy-momentum loss due to diffusion process are propagated by a simple ansatz for medium excitation.

 Medium excitation is important for the energy-momentum conservation of model prediction.

- Initialize all partons momentum from pythia.
- In-medium partonic transport, including hard recoil particles, $\alpha_s(\max\{Q, 2\pi T\})$.
- Soft recoil particles (E < 5T) and energy-momentum loss due to diffusion process are propagated by a simple ansatz for medium excitation.

 δp^μ transports via hydro-like response function

- Medium excitation is important for the energy-momentum conservation of model prediction.
- \bullet A simple ansatz to redistribute energy momentum deposition in the solid angle Ω in the Bjorken frame.

$$\frac{de}{d\Omega} \sim \frac{\delta p^0 + \hat{\Omega} \cdot \delta \vec{p}/c_s}{4\pi}, \quad \frac{d\vec{p}}{d\Omega} \sim \frac{3(c_s \delta p^0 + \hat{\Omega} \cdot \delta \vec{p})\hat{\Omega}}{4\pi}$$

- Initialize all partons momentum from pythia.
- In-medium partonic transport, including hard recoil particles, $\alpha_s(\max\{Q, 2\pi T\})$.
- Soft recoil particles (E < 5T) and energy-momentum loss due to diffusion process are propagated by a simple ansatz for medium excitation.

 δp^{μ} transports via hydro-like response function

- Medium excitation is important for the energy-momentum conservation of model prediction.
- \bullet A simple ansatz to redistribute energy momentum deposition in the solid angle Ω in the Bjorken frame.

$$rac{de}{d\Omega} \sim rac{\delta p^0 + \hat{\Omega} \cdot \delta ec{p}/c_s}{4\pi}, \quad rac{dec{p}}{d\Omega} \sim rac{3(c_s \delta p^0 + \hat{\Omega} \cdot \delta ec{p})\hat{\Omega}}{4\pi}$$

• $\Delta p_T/\Delta \eta \Delta \phi$ by freezeout with avg. $v_{\rm radial} \sim 0.6$.

- Initialize all parton's momenta from pythia.
- In-medium partonic transport, including hard recoil particles, $\alpha_s(\max\{Q, 2\pi T\})$.
- Soft recoil particles (E < 5T) and energy-momentum loss due to diffusion process are propagated by a simple ansatz for medium excitation.

The open heavy-flavor transport sector

- Initialize heavy quark momenta from Pythia.
- In-medium transport using coupling constant $\alpha_s(\max\{Q, 2\pi T\})$ (not the best tune parameter from Bayesian analysis).

Heavy-jet

- Initialize all partons momentum from pythia.
- Currently only consider fragmentation hadronization of heavy quarks.
- Work in-progress:
 - ▶ Use the best-fit transport coefficients for both heavy and light flavors.
 - ▶ D-jet, b-jet angular correlation.

19 / 21

- 1 Introduction to the open-heavy-flavor transport
- 2 What questions can be answered by studying heavy jet
- 3 Current status of the inclusive & heavy jet calculation from the LIDO model
- 4 Summary and work in-progress

Summary and work in-progress

- Bayesian analysis on open-heavy-flavor observables extracts the T & p dependence of heavy quark \hat{q} .
- Relative contribution of elastic & radiative energy loss have additional constrain.
- HF angular correlation with the initial production direction (or jet) may help to provide this additional information.
- Using the Lido model, we perform a preliminary study on inclusive jet and heavy-flavor jet production in Pb+Pb at 5TeV.
- Work in-progress: look for the signal of elastic versus radiative energy loss for bottom and charm flavor in realistic HF-jet correlation.

Back-up

