in Heavy lon Collisions

STAR Group-3 results on CME in isobar collisions

Jie Zhao (for the STAR collaboration)
Nov. 12021

Purdue University

Office of
Science

Outline

RHIC-STAR experiment

Background issue

Invariant mass dep. of the $\Delta \boldsymbol{Y}$ correlator
ΔY with respect to $\Psi_{\mathrm{RP}}(\mathrm{ZDC})$ and Ψ_{PP} (TPC) Summary and outlook
Ψ_{RP} : reaction plane ; Ψ_{Pp} : participant plane

STAR
 Chiral Magnetic Effect (CME)

Kharzeev, et al. NPA 803, 227 (2008)

$j_{V}=\frac{N_{c} e}{2 \pi^{2}} \mu_{A} B, \Longrightarrow$ electric charge separation along the B field
$>$ Gluon configuration with non-zero topological charge $\left(Q_{w}\right)$ converts left (right)-handed fermions to right (left)-handed fermions, generating electric current along B direction and leading to electric charge separation $>$ Experimentally, $\gamma=\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \psi_{R P}\right)$ used to search for the CME in heavy ion collisions

Voloshin, PRC 70, 057901 (2004)

The STAR detector

Chirality workshop 2021
J. Zhao

Background issue

STAR, PRL 103,251601 (2009); PRC 81,54908 (2010); PRC 88,64911 (2013)

STAR, PRC 89,044908 (2014)

STAR, PLB 798 (2019) 134975
$\phi_{\alpha}, \phi_{\beta}, \phi_{c}$ are the azimuthal angles of the charged particles measured by STAR TPC
$>$ Large $\Delta y=Y_{o s}-\gamma_{s s}$ correlator observed
$>$ Measurements dominated by backgrounds
$>$ How to address backgrounds?

Background

$$
\begin{aligned}
& \Delta \boldsymbol{\gamma}_{\mathrm{bkg}}=\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \psi_{R P}\right)\right\rangle \\
& \begin{array}{c}
\text { multiplicity } \\
\text { "N" }
\end{array} \\
& \text { "2-p" } \\
& \text { S. A. Voloshin, PRC 70, } 057901 \text { (2004) } \\
& \text { F. Wang, PRC 81, } 064902 \text { (2010) } \\
& \text { A. Bzdak, V. Koch and J. Liao, PRC 83, } 014905 \text { (2011) } \\
& \text { S. Schlichting and S. Pratt, PRC 83, } 014913 \text { (2011) } \\
& \text { F. Wang, J. Zhao, PRC 95,051901(R) (2017) }
\end{aligned}
$$

$$
\begin{gathered}
=\frac{N_{\text {cluster }}}{N_{\alpha} N_{\beta}}\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \varphi_{\text {cluster }}\right) \cos \left(2 \varphi_{\text {cluster }}-2 \psi_{R P}\right)\right\rangle \\
\begin{array}{c}
\text { multiplicity } \\
\text { " } \mathrm{N} \text { " }
\end{array} \quad \begin{array}{c}
\text { two-particle correlation } \\
\text { "2-p" }
\end{array} \\
\mathrm{v}_{2}
\end{gathered}
$$

Background

$>$ Invariant mass dep. of the Δy correlator
$>\Delta y$ with respect to $\Psi_{R P}(Z D C)$ and $\Psi_{P P}(T P C)$

$$
\Delta \boldsymbol{\gamma}_{\mathrm{bkg}}=\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \psi_{R P}\right)\right\rangle
$$

$$
=\frac{N_{\text {cluster }}}{N_{\alpha} N_{\beta}}\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \varphi_{\text {cluster }}\right) \cos \left(2 \varphi_{\text {chuster }}-2 \psi_{R P}\right)\right\rangle
$$

multiplicity two-particle correlation
"N"
"2-p"

Background

J. Zhao, H. Li, F. Wang, Eur. Phys. J. C (2019) 79:168 H.-J. Xu, et al, CPC 42 (2018) 084103
$>$ Invariant mass dep. of the Δy correlator
$>\Delta y$ with respect to $\Psi_{R P}(Z D C)$ and $\Psi_{P P}(T P C)$

$$
\Delta \boldsymbol{\gamma}_{\mathrm{bkg}}=\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \psi_{R P}\right)\right\rangle
$$

$$
=\frac{N_{\text {cluster }}}{N_{\alpha} N_{\beta}}\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \varphi_{\text {cluster }}\right) \cos \left(2 \varphi_{\text {cluster }}-2 \psi_{R P}\right)\right\rangle
$$

multiplicity two-particle correlation
" N " "2-p"

$$
\begin{aligned}
& \qquad V_{2} \\
& \text { S. A. Voloshin, Phys. Rev. Lett. 105, } 172301 \\
& \text { W.T. Deng, et al, Phys. Rev. C 94, 041901(R) } \\
& \text { H.J. Xu, et al, PRL 121 (2018) 022301 } \\
& \text { H.L. Li, et al, PRC 98, } 054907 \text { (2018) }
\end{aligned}
$$

> Isobar collisions:
similar "N(~1\% in MB)", "2-p", $v_{2}(\sim 2-3 \%)$-> similar background (scaled $\sim \mathrm{v}_{2}$ and $1 / \mathrm{N}$)

Invariant mass method

STAR, PRL 92,092301 (2004)

$\Delta \boldsymbol{\gamma}_{\mathrm{bkg}}=\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \boldsymbol{\psi}_{R P}\right)\right\rangle$
$=\frac{N_{\text {cluster }}}{N_{\alpha} N_{\beta}}\left\langle\frac{\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \varphi_{\text {cluster }}\right)}{\left.\cos \left(2 \varphi_{\text {chuster }}-2 \psi_{R P}\right)\right\rangle} \mathrm{v}_{2}\right.$
F. Wang, J. Zhao, PRC 95,051901(R) (2017)
J. Zhao, et al, Eur. Phys. J. C (2019) 79:168

$>$ Resonance background: resonance decay $+v_{2} \rightarrow$ CME-like Δy
> Can we remove/isolate the background?
$>$ Exploiting invariant mass dependence of Δy

Invariant mass method

observed:

$>$ pion pair r $(\sim 1 / \mathrm{N})$ different by $\sim 3 \%$ with 20-
50\% centrality
$>\mathrm{v}_{2}$ diff by $\sim 1.5 \%$ (data v_{2} contain nonflow)

Invariant mass method

STAR, arXiv:2109.00131

> Isobar collisions:

similar "N (~1\% in MB)", "2-p", v_{2} (~2-3\%) -> similar background (scaled $\sim \mathrm{v}_{2}$ and $1 / \mathrm{N}$)

$$
\begin{aligned}
& \Delta \gamma^{Z r}=C M E^{Z r}+B k g^{Z r} \\
& \Delta \gamma^{R u}=C M E^{R u}+B k g^{R u} \\
& \text { with: } \\
& A^{\prime}=\Delta \gamma^{R u} / \Delta \gamma^{Z r} \\
& a^{\prime}=r^{R u} / r^{Z r} v_{2}^{R u} / v_{2}^{Z r} \\
& =B k g^{R u} / B k g^{Z r}
\end{aligned}
$$

$$
\Delta \boldsymbol{\gamma}_{\mathrm{bkg}}=\left\langle\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \boldsymbol{\psi}_{R P}\right)\right\rangle
$$

$$
\begin{aligned}
& =\frac{N_{\text {cluster }}}{N_{\alpha} N_{\beta}}\left\langle\left\langle{\cos \left(\varphi_{\alpha}+\varphi_{\beta}-2 \varphi_{\text {cluster }}\right)}^{\left.\cos \left(2 \varphi_{\text {cluster }}-2 \psi_{R P}\right)\right\rangle} \begin{array}{c}
\text { multiplicitity } \\
\text { uN" } \mathrm{N}^{\prime}
\end{array} \quad \begin{array}{c}
\text { two-particle correlation } \\
\text { " } 2-\mathrm{p} \text { " }
\end{array}\right.\right. \\
& \mathrm{v}_{2}
\end{aligned}
$$

The " N " (r) diff. not corrected in the blind analysis due to an overlook

$$
\Delta \gamma^{R u}-a^{\prime} \Delta \gamma^{Z r}=C M E^{R u}-a^{\prime} C M E^{Z r}
$$

mass dependent CME signal
$>$ No evidence of difference observed

$\Psi_{\mathrm{PP}} \& \Psi_{\mathrm{RP}}$ to resolve CME \& Bkg

H-J. Xu, et al, CPC 42 (2018) 084103, arXiv:1710.07265
B. Alver et al. (PHOBOS) , PRL 98, 242302 (2007).

$>\boldsymbol{\Psi}_{\mathrm{PP}}$ maximizes flow,	$\boldsymbol{\rightarrow}$	flow background
$>\boldsymbol{\Psi}_{\mathrm{RP}}$ maximizes the magnetic field (B) strength,	$\boldsymbol{\rightarrow}$	CME signal

H-J. Xu, et al, CPC 42 (2018) 084103,

$$
\begin{aligned}
& \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}=\operatorname{CME}\left\{\psi_{\mathrm{TPC}}\right\}+\operatorname{Bkg}\left\{\psi_{\mathrm{TPC}}\right\} \\
& \Delta \gamma\left\{\psi_{\mathrm{ZDC}}\right\}=\operatorname{CME}\left\{\psi_{\mathrm{ZDC}}\right\}+\operatorname{Bkg}\left\{\psi_{\mathrm{ZDC}}\right\}
\end{aligned}
$$

Two-component assumption
$\operatorname{CME}\left\{\psi_{\mathrm{TPC}}\right\}=a * \operatorname{CME}\left\{\psi_{\mathrm{ZDC}}\right\}, \operatorname{Bkg}\left\{\psi_{\mathrm{ZDC}}\right\}=a * \operatorname{Bkg}\left\{\psi_{\mathrm{TPC}}\right\}$
$a=v_{2}\left\{\psi_{\mathrm{ZDC}}\right\} / v_{2}\left\{\psi_{\mathrm{TPC}}\right\}, A=\Delta \gamma\left\{\psi_{\mathrm{ZDC}}\right\} / \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}$ Both are experimental measurements

$$
\mathrm{f}_{\mathrm{CME}}=\operatorname{CME}\left\{\psi_{\mathrm{TPC}}\right\} / \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}=(\mathrm{A} / a-1) /\left(1 / a^{2}-1\right)
$$

f_{CME} in $\mathrm{Ru} \mathbf{+ R u}$ and $\mathrm{Zr}+\mathrm{Zr}$

STAR, arXiv:2109.00131

Full-event

Sub-event

$$
\begin{gathered}
\mathrm{f}_{\mathrm{CME}}=\frac{\Delta \gamma_{C M E}\left\{\psi_{\mathrm{TPC}}\right\}}{\Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}} \\
=\frac{A / a-1}{1 / a^{2}-1} \\
a=v_{2}\left\{\psi_{\mathrm{ZDC}}\right\} / v_{2}\left\{\psi_{\mathrm{TPC}}\right\} . \\
A=\Delta \gamma\left\{\psi_{\mathrm{ZDC}}\right\} / \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\} .
\end{gathered}
$$

$$
\begin{aligned}
& \text { Full-event: } \\
& f_{\mathrm{CME}}(\mathrm{Ru}+\mathrm{Ru})=0.29 \pm 0.13 \pm 0.01 \\
& \mathrm{f}_{\mathrm{CME}}(\mathrm{Zr}+\mathrm{Zr})=0.06 \pm 0.08 \pm 0.02
\end{aligned}
$$

sub-event:

$\left(f_{\mathrm{CME}}(\mathrm{Ru}+\mathrm{Ru})=0.12 \pm 0.20 \pm 0.00\right)$
$\left(f_{\text {CME }}(Z r+Z r)=-0.01 \pm 0.12 \pm 0.03\right)$

STAR

additional constraint using TPC

STAR, arXiv:2109.00131

Background scales with $\mathbf{v}_{\mathbf{2}}$ and $1 / \mathbf{N}$:

$$
\begin{aligned}
& \frac{\left(1-f_{\mathrm{CME}}^{\mathrm{Ru}+\mathrm{Ru}}\right) \Delta \gamma^{\mathrm{Ru}+\mathrm{Ru}}}{v_{2}^{\mathrm{Ru}+\mathrm{Ru}} / N^{\mathrm{Ru}+\mathrm{Ru}}=\frac{\left(1-f_{\mathrm{CME}}^{\mathrm{Zr}+\mathrm{Zr}}\right) \Delta \gamma^{\mathrm{Zr}+\mathrm{Zr}}}{v_{2}^{\mathrm{Zr}+\mathrm{Zr}} / N^{\mathrm{Zr}+\mathrm{Zr}}}} \begin{array}{l}
f_{\mathrm{CME}}^{\mathrm{Ru}+\mathrm{Ru}}=\left(\frac{a^{\prime}}{A^{\prime}}\right) f_{\mathrm{CME}}^{\mathrm{Zr}+\mathrm{Zr}}+\left(1-\frac{a^{\prime}}{A^{\prime}}\right) \\
A^{\prime}=\Delta \gamma^{\mathrm{Ru}+\mathrm{Ru}} / \Delta \gamma^{\mathrm{Zr}+\mathrm{Zr}} \\
a^{\prime}=\left(v_{2}^{\mathrm{Ru}+\mathrm{Ru}} \not N^{\mathrm{Ru}+\mathrm{Ru}}\right) /\left(v_{2}^{\mathrm{Zr}+\mathrm{Zr}} \not N^{\mathrm{Zr}+\mathrm{Zr}}\right)
\end{array}
\end{aligned}
$$

$$
a^{\prime} / A^{\prime}=\frac{\Delta \gamma^{\mathrm{Zr}+\mathrm{Zr}} /\left(v_{2}^{\mathrm{Zr}+\mathrm{Zr}} / N^{\mathrm{Zr}+\mathrm{Zr}}\right)}{\Delta \gamma^{\mathrm{Ru}+\mathrm{Ru}} /\left(v_{2}^{\mathrm{Ru}+\mathrm{Ru}} / N^{\mathrm{Ru}+\mathrm{Ru}}\right)}
$$corrected in theblind analysis

B-field expectation:
$f_{C M E}^{R u+R u} / f_{C M E}^{Z r}+Z r=1+\alpha_{\mathrm{B}}$
where $\alpha_{\mathrm{B}}=0.15 \pm 0.05$

No overlap with allowed CME region, but " N " ratio not included in the predefined a '. Including it, $a^{\prime} / A^{\prime}=0.990 \pm 0.007$, there would be overlap with allowed CME region (including $\mathrm{f}_{\mathrm{CME}}=0$)

Compilation of all the results

STAR, arXiv:2109.00131, 1 Sep 2021

> None of the predefined signatures have been observed in the blind analysis
$>$ Blind analysis assumes background $\sim \mathrm{v}_{2}$ only. Multiplicity effect should and will be taken into account
$>$ Nonflow effect can affect the CME baseline and will be studied

Results from $A u+A u$

STAR, arXiv:2006.05035, 9 Jun 2020

F. Wang's talk @Nov. 2

Upper limit ~15\%

Indications of finite signal in 20-50\%, 1-3 σ possible remaining nonflow effects
Y. Feng et al., arXiv:2106.15595

STAR Connection between isobar and $A u+A u$

Y. Feng, Y. Lin, J. Zhao, and F. Wang, Phys. Lett. B 820, 136549 (2021)

Bkg. $\sim 1 / N \sim 1 / A$
B. field $\sim A / A^{2 / 3} \sim A^{1 / 3}$
$\Delta \gamma_{\text {CME }} \sim \mathrm{B}^{2} \sim \mathrm{~A}^{2 / 3}$
Background: isobar/AuAu ~2
Signal: AuAu/isobar~1.5
$\mathrm{f}_{\mathrm{cme}}$ possibly a factor of ~ 3 reduction
Caveats: axial charge density μ_{5} / \mathbf{s}, temperature dependent sphaleron transition can be different between isobar and AuAu
$>$ AVFD simulation: indicates smaller signal in isobar than $A u+A u$
$>$ Isobar blind analysis: no predefined CME signatures have been observed
$>$ STAR Au+Au data: (2.4B MB events) indicate a finite CME signal with $1-3 \sigma$ significance; Expect 20B from 2023+25 runs
$>$ Isobar data and Au+Au data are not inconsistent

Summary and outlook

$>$ STAR Group-3 carried out the invariant mass and spectator plane/participant plane analyses in the isobar blind analysis
> No predefined CME signatures have been observed in the isobar blind analysis
$>$ For better understanding of the isobar data: multiplicity ("N") effect will be taken into account. Nonflow effect on baseline will be studied
> STAR Au+Au data (2.4B MB events) indicate a finite CME signal with $1-3 \sigma$ significance; Expect 20B from 2023+25 runs
$>$ Isobar data and Au+Au data are generally understood/expected under the same overall picture

Thanks to BNL, RHIC operation and RCF, ORNL, RIKEN, and everyone involved in the isobar program!

