The 6th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

Jie Zhao (for the STAR collaboration)

Nov. 1 2021

Purdue University

Office of Science

Chirality workshop 2021

J. Zhao

 Ψ_{RP} : reaction plane ; Ψ_{PP} : participant plane

Chiral Magnetic Effect (CME)

Kharzeev, et al. NPA 803, 227 (2008)

Gluon configuration with non-zero topological charge (Q_w) converts left (right)-handed fermions to right (left)-handed fermions, generating electric current along B direction and leading to electric charge separation
Experimentally, \$\gamma = \cos(\phi_\alpha + \phi_\beta - 2\psi_{RP})\$ used to search for the CME in heavy ion collisions

The STAR detector

Background issue

STAR, PRL 103,251601 (2009); PRC 81,54908 (2010); PRC 88,64911 (2013)

 $\phi_{\alpha},\,\phi_{\beta},\,\phi_{c}$ are the azimuthal angles of the charged particles measured by STAR TPC

- > Large $\Delta \gamma = \gamma_{OS} \gamma_{SS}$ correlator observed
- Measurements dominated by backgrounds
- How to address backgrounds?

Background

- S. A. Voloshin, PRC 70, 057901 (2004)
- F. Wang, PRC 81, 064902 (2010)
- A. Bzdak, V. Koch and J. Liao, PRC 83, 014905 (2011)
- S. Schlichting and S. Pratt, PRC 83, 014913 (2011)
- F. Wang, J. Zhao, PRC 95,051901(R) (2017)

Background

\succ Invariant mass dep. of the $\Delta\gamma$ correlator

 $\Delta \boldsymbol{\gamma} \text{ with respect to } \boldsymbol{\Psi}_{\mathsf{RP}} \text{ (ZDC) and } \boldsymbol{\Psi}_{\mathsf{PP}} \text{ (TPC)}$ $\Delta \boldsymbol{\gamma}_{\mathsf{bkg}} = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle$

$$\frac{N_{cluster}}{N_{\alpha}N_{\beta}}\left(\cos(\varphi_{\alpha}+\varphi_{\beta}-2\varphi_{cluster})\cos(2\varphi_{cluster}-2\psi_{RP})\right)$$

multiplicity two-particle correlation V_2 "N" "2-p"

Background

> Invariant mass dep. of the $\Delta \gamma$ correlator

 $\succ \Delta \gamma$ with respect to Ψ_{RP} (ZDC) and Ψ_{PP} (TPC)

 $\Delta \boldsymbol{\gamma}_{\mathsf{bkg}} = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle$

$$\frac{cluster}{\sqrt{\alpha N_{\beta}}} \left(\cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RF}) \right) = \frac{1}{2} \left(\cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RF}) \right) = \frac{1}{2} \left(\cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster}) - 2\psi_{RF} \right)$$

multiplicity two-particle correlation "N" "2-p"

V₂

Isobar collisions:

S. A. Voloshin, Phys. Rev. Lett. 105, 172301 W.T. Deng, *et al,* Phys. Rev. C 94, 041901(R) H.J. Xu, *et al,* PRL 121 (2018) 022301 H.L. Li, *et al,* PRC 98, 054907 (2018)

similar "N(~1% in MB)", "2-p", v₂ (~2-3%) ->

similar background (scaled $\sim v_2$ and 1/N)

Invariant mass method

> Resonance background: resonance decay + $v_2 \rightarrow CME$ -like $\Delta \gamma$

- Can we remove/isolate the background?
- > Exploiting invariant mass dependence of $\Delta \gamma$

Invariant mass method

Invariant mass method

STAR, arXiv:2109.00131

Isobar collisions:

Ψ_{PP} & Ψ_{RP} to resolve CME & Bkg

H-J. Xu, *et al*, CPC 42 (2018) 084103, arXiv:1710.07265 B. Alver *et al.* (PHOBOS) , PRL **98**, 242302 (2007).

Ψ_{PP} & Ψ_{RP} to resolve CME & Bkg STAR $\succ \Psi_{PP}$ maximizes flow, flow background → $\succ \Psi_{RP}$ maximizes the magnetic field (B) strength, \rightarrow CME signal $\Delta \gamma$ w.r.t. TPC Ψ_{EP} (proxy of Ψ_{PP}) and ZDC Ψ_1 (proxy of Ψ_{RP}) contain different fractions of CME and Bkg H-J. Xu, et al, CPC 42 (2018) 084103, arXiv:1710.07265 $\Delta \gamma \{ \psi_{\text{TPC}} \} = \text{CME} \{ \psi_{\text{TPC}} \} + \text{Bkg} \{ \psi_{\text{TPC}} \}$ Two-component assumption $\Delta \gamma \{ \psi_{\text{ZDC}} \} = \text{CME} \{ \psi_{\text{ZDC}} \} + \text{Bkg} \{ \psi_{\text{ZDC}} \}$ $CME\{\psi_{TPC}\} = a * CME\{\psi_{ZDC}\}, Bkg\{\psi_{ZDC}\} = a * Bkg\{\psi_{TPC}\}$ Ψ_{PP} assume Bkg $\propto v_{\gamma}$ ♦ Ψ_{RP} $a = v_2 \{ \psi_{\text{ZDC}} \} / v_2 \{ \psi_{\text{TPC}} \}, A = \Delta \gamma \{ \psi_{\text{ZDC}} \} / \Delta \gamma \{ \psi_{\text{TPC}} \}$ Both are experimental measurements $f_{CME} = CME \{\psi_{TPC}\} / \Delta \gamma \{\psi_{TPC}\} = (A/a-1)/(1/a^2-1)$

f_{CME} in Ru+Ru and Zr+Zr

additional constraint using TPC

No overlap with allowed CME region, but "N" ratio not included in the predefined *a*'. Including it, $a'/A' = 0.990 \pm 0.007$, there would be overlap with allowed CME region (including f_{CME}=0)

Compilation of all the results

STAR, arXiv:2109.00131, 1 Sep 2021

- Blind analysis assumes background ~ v₂ only. Multiplicity effect should and will be taken into account
- Nonflow effect can affect the CME baseline and will be studied

Results from Au+Au

STAR, arXiv:2006.05035, 9 Jun 2020

Indications of finite signal in 20-50%, 1-3 σ possible remaining nonflow effects

Y. Feng et al., arXiv:2106.15595

Connection between isobar and Au+Au

Y. Feng, Y. Lin, J. Zhao, and F. Wang, Phys. Lett. B 820, 136549 (2021)

Bkg.~ 1/N~ 1/AB. field~ A/A^{2/3} ~ A^{1/3} $\Delta \gamma_{CME}$ ~ B^2 ~ A^{2/3}Background:isobar/AuAu ~ 2Signal:AuAu/isobar ~ 1.5f_{cme} possibly a factor of ~3 reduction

Caveats: axial charge density μ_5 /s, temperature dependent sphaleron transition can be different between isobar and AuAu

- > **AVFD simulation:** indicates smaller signal in isobar than Au+Au
- Isobar blind analysis: no predefined CME signatures have been observed
- STAR Au+Au data: (2.4B MB events) indicate a finite CME signal with 1-3σ significance; Expect 20B from 2023+25 runs
- Isobar data and Au+Au data are not inconsistent

- STAR Group-3 carried out the invariant mass and spectator plane/participant plane analyses in the isobar blind analysis
- No predefined CME signatures have been observed in the isobar blind analysis
- For better understanding of the isobar data: multiplicity ("N") effect will be taken into account. Nonflow effect on baseline will be studied
- > STAR Au+Au data (2.4B MB events) indicate a finite CME signal with $1-3\sigma$ significance; Expect 20B from 2023+25 runs
- Isobar data and Au+Au data are generally understood/expected under the same overall picture

Thanks to BNL, RHIC operation and RCF, ORNL, RIKEN, and everyone involved in the isobar program !