Exact equilibrium distributions for massive and massless fermions with rotation and acceleration

Based on JHEP 02 (2021) 101 \& JHEP 10 (2021) 077 in collaboration with
F.Becattini \& M.Buzzegoli
Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions
November 2021

Main result

Wigner function for free fermions at general global equilibrium:

$$
\begin{aligned}
& W(x, k)=\frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p}{2 \varepsilon} \sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{\beta}(i n \phi) \cdot p} \times \\
& {\left[\mathrm{e}^{-i n \frac{\phi: \Sigma}{2}}(m+\not p) \delta^{4}\left(k-\frac{\Lambda^{n} p+p}{2}\right)+(m-\not p) \mathrm{e}^{i n \frac{\phi: \Sigma}{2}} \delta^{4}\left(k+\frac{\Lambda^{n} p+p}{2}\right)\right]}
\end{aligned}
$$

Compute all quantum corrections in relativistic fluids at global equilibrium.
Exact distribution functions and spin vector at all orders in thermal vorticity.

Global equilibrium

Density operator at global equilibrium:

$$
\widehat{\rho}=\frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu}+\frac{1}{2} \varpi_{\mu \nu} \widehat{J}^{\mu \nu}\right] \quad\langle\widehat{O}\rangle=\operatorname{Tr}(\widehat{\rho} \widehat{O})
$$

The vector b is constant and the thermal vorticity ϖ is a constant antisymmetric tensor. The four-temperature β vector is a Killing vector:

$$
\beta^{\mu}(x)=b^{\mu}+\varpi^{\mu \nu} x_{\nu} \equiv \frac{u^{\mu}}{T}
$$

At global equilibrium:

$$
\begin{array}{ll}
\frac{A^{\mu}}{T}=\varpi^{\mu \nu} u_{\nu} & \frac{\omega^{\mu}}{T}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \varpi_{\nu \rho} u_{\sigma} \\
\text { Acceleration } & \text { Angular velocity }
\end{array}
$$

The generators of the Poincaré group appear in the density operator.
Analytic continuation of the thermal vorticity: $\varpi \mapsto-i \phi$

$$
\widehat{\rho}=\frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu}-\frac{i}{2} \phi_{\mu \nu} \widehat{J}^{\mu \nu}\right]
$$

Factorization of the density operator:

$$
\begin{aligned}
& \widehat{\rho}=\frac{1}{Z} \exp \left[-\widetilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \exp \left[-i \frac{\phi_{\mu \nu}}{2} \widehat{J}^{\mu \nu}\right] \equiv \frac{1}{Z} \exp \left[-\widetilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \widehat{\Lambda} \\
& \widetilde{b}^{\mu}(\varpi)=\sum_{k=0}^{\infty} \frac{1}{(k+1)!}(\underbrace{\phi_{\alpha_{1}}^{\mu} \phi_{\alpha_{2}}^{\alpha_{1}} \ldots \phi_{\alpha_{k}}^{\alpha_{k-1}}}_{k \text { times }}) b^{\alpha_{k}} \quad \widehat{\Lambda} \equiv \mathrm{e}^{-i \frac{\phi_{\mu \nu}^{2}}{2} \widehat{J}^{\mu \nu}}
\end{aligned}
$$

We can use group theory to calculate thermal expectation values.

Any thermal expectation value in a free quantum field theory is obtained from:

$$
\begin{gathered}
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=\frac{1}{Z} \operatorname{Tr}\left(\exp \left[-\tilde{b}_{\mu}(\phi) \widehat{P}^{\mu}\right] \widehat{\Lambda} \widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right) \\
{\left[\widehat{a}_{s}^{\dagger}(p), \widehat{a}_{t}\left(p^{\prime}\right)\right]_{ \pm}=2 \varepsilon \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{s t}}
\end{gathered}
$$

Using Poincaré transformation rules and (anti)commutation relations (particle with spin S):

$$
\begin{aligned}
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle= & (-1)^{2 S} \sum_{r} D^{S}(W(\Lambda, p))_{r s} \mathrm{e}^{-\widetilde{b} \cdot \Lambda p}\left\langle\widehat{a}_{r}^{\dagger}(\Lambda p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle+ \\
& +2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)
\end{aligned}
$$

$\mathrm{D}(\mathrm{W})$ is the "Wigner rotation" in the S -spin representation.

We find a solution by iteration:
(I) $\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle \sim 2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)$

II $\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle \sim 2 \varepsilon(-1)^{2 S} D^{S}\left(W\left(\Lambda^{2}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot\left(\Lambda p+\Lambda^{2} p\right)} \delta^{3}\left(\Lambda^{2} \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)+$

$$
+2 \varepsilon \mathrm{e}^{-\widetilde{b} \cdot \Lambda p} D^{S}(W(\Lambda, p))_{t s} \delta^{3}\left(\Lambda \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)
$$

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=2 \varepsilon^{\prime} \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\Lambda^{n} \boldsymbol{p}-\boldsymbol{p}^{\prime}\right) D^{S}\left(W\left(\Lambda^{n}, p\right)\right)_{t s} \mathrm{e}^{-\widetilde{b} \cdot \sum_{k=1}^{n} \Lambda^{k} p}
$$

For vanishing vorticity (i.e. $\Lambda=\mathrm{I}$):

$$
\left\langle\widehat{a}_{s}^{\dagger}(p) \widehat{a}_{t}\left(p^{\prime}\right)\right\rangle=2 \varepsilon^{\prime} \sum_{n=1}^{\infty}(-1)^{2 S(n+1)} \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{t s} \mathrm{e}^{-n b \cdot p}=\frac{2 \varepsilon \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \delta_{t s}}{\mathrm{e}^{b \cdot p}+(-1)^{2 S+1}}
$$

Wigner function

The Wigner for free fermions:

$$
W(x, k)=-\frac{1}{(2 \pi)^{4}} \int \mathrm{~d}^{4} y \mathrm{e}^{-i k \cdot y}\langle: \Psi(x-y / 2) \bar{\Psi}(x+y / 2):\rangle
$$

Expectation values:

$$
j^{\mu}(x)=\int \mathrm{d}^{4} k \operatorname{tr}\left(\gamma^{\mu} W(x, k)\right)
$$

Wigner equation, a constraint:

$$
\left(m-\not k-\frac{i \hbar \not \partial}{2}\right) W(x, k)=0 \quad \begin{aligned}
& \text { Holds regardless of } \\
& \text { the density operator }
\end{aligned}
$$

Exact Wigner function for free fermions at global equilibrium:

$$
\begin{aligned}
W(x, k)= & \frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p}{2 \varepsilon} \sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \tilde{\beta}(i n \phi) \cdot p} \times \\
& {\left[\mathrm{e}^{-i n \frac{\phi \cdot \Sigma}{2}}(m+\not p) \delta^{4}\left(k-\left(\Lambda^{n} p+p\right) / 2\right)+(m-\not p) \mathrm{e}^{i n \frac{\phi \cdot \Sigma}{2}} \delta^{4}\left(k+\left(\Lambda^{n} p+p\right) / 2\right)\right] }
\end{aligned}
$$

Where $\Lambda=\mathrm{e}^{-i \frac{\phi}{2}: J}$ is in the four-vector representation.
Solves the Wigner equation! Full summation of the " \hbar expansion".
Differs from previous ansatz:
[F.Becattini, V.Chandra, L.Del Zanna, E.Grossi, Annals Phys. 338 (2013) 32-49]

$$
\begin{aligned}
W_{A}(x, k) & =\int \frac{\mathrm{d}^{3} p}{2 \varepsilon} \delta^{4}(k-p)(\not p+m)\left(\mathrm{e}^{\beta \cdot p} e^{-\frac{\pi \cdot \Sigma}{2}}+\mathbb{I}\right)^{-1}(\not p+m) \\
& +\delta^{4}(k+p)(m-\not p)\left(e^{\beta \cdot p} e^{\frac{\pi \cdot \Sigma}{2}}+\mathbb{I}\right)(m-\not p)
\end{aligned}
$$

We can use the exact solution to compute exact expectation values.

Energy density for massless fermions, equilibrium with acceleration ($\phi=i a / T$)

$$
\rho=\frac{3 T^{4}}{8 \pi^{2}} \sum_{n=1}^{\infty}(-1)^{n+1} \phi^{4} \frac{\sinh n \phi}{\sinh ^{5}(n \phi / 2)}
$$

The series is finite as long as ϕ is real. For real thermal vorticity it diverges!
The series includes terms which are non analytic at $\phi=0$.
Analytic distillation:

The series boils down to polynomials: $\quad \alpha^{\mu}=\frac{A^{\mu}}{T} \quad w^{\mu}=\frac{\omega^{\mu}}{T}$

$$
\rho=\frac{7 \pi^{2}}{60 \beta^{4}}-\frac{\alpha^{2}}{24 \beta^{4}}-\frac{17 \alpha^{4}}{960 \pi^{2} \beta^{4}}
$$

Expectation values vanish at the Unruh temperature $T_{U}=\sqrt{-A \cdot A} / 2 \pi$ [G.Prokhorov, O. Teryaev, V. Zakharov, JHEP03(2020)137]
Axial current under rotation: [V. Ambrus, E. Winstanley, 1908.10244]

$$
j_{A}^{\mu}=T^{2}\left(\frac{1}{6}-\frac{w^{2}}{24 \pi^{2}}-\frac{\alpha^{2}}{8 \pi^{2}}\right) \frac{w^{\mu}}{\sqrt{\beta^{2}}}
$$

First exact results at equilibrium with both rotation and acceleration.
[V. Ambrus, E. Winstanley 2107.06928]
$\rho=T^{4}\left(\frac{7 \pi^{2}}{60}-\frac{\alpha^{2}}{24}-\frac{w^{2}}{8}-\frac{17 \alpha^{4}}{960 \pi^{2}}+\frac{w^{4}}{64 \pi^{2}}+\frac{23 \alpha^{2} w^{2}}{1440 \pi^{2}}+\left(\frac{11(\alpha \cdot w)^{2}}{720 \pi^{2}}\right)\right) \begin{gathered}\text { New } \\ \text { contribution! }\end{gathered}$

Current and distribution function

The current of particles is (massive or massless):

$$
j_{+}^{\mu}(x)=\frac{1}{(2 \pi)^{3}} \sum_{s t} \int \frac{\mathrm{~d}^{3} p}{2 \varepsilon} \frac{\mathrm{~d}^{3} p^{\prime}}{2 \varepsilon^{\prime}} \mathrm{e}^{i\left(p^{\prime}-p\right) \cdot x}\left\langle\widehat{a}_{s}^{\dagger}\left(p^{\prime}\right) \widehat{a}_{t}(p)\right\rangle \bar{u}_{s}\left(p^{\prime}\right) \gamma^{\mu} u_{t}(p)
$$

Compare with the previous ansatz
[F.Becattini, V.Chandra, L.Del Zanna, E.Grossi, Annals Phys. 338 (2013) 32-49]

$$
j_{+}^{\mu}(x)=\int \frac{\mathrm{d}^{3} p}{\varepsilon} p^{\mu} \operatorname{tr}(X) \quad X=\left(\mathrm{e}^{\beta \cdot p} \mathrm{e}^{-\frac{\pi}{2}: \Sigma}+\mathbb{I}\right)^{-1}
$$

The exact current is parallel to p^{μ} only if $\left\langle\widehat{a}_{s}^{\dagger}\left(p^{\prime}\right) \widehat{a}_{t}(p)\right\rangle \propto \delta_{s t} \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right)$
The ansatz does not take into account the neither the non-diagonal terms nor the $\tilde{\beta}$ transform.

The current of particles is (massive or massless):

$$
j_{+}^{\mu}(x)=\frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p}{2 \varepsilon} \sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{\beta}_{n} \cdot p}\left[p^{\mu} \operatorname{tr}\left(\mathrm{e}^{-i n \frac{\phi}{2}: \Sigma}\right)+2 i p_{\nu} \operatorname{tr}\left(\Sigma^{\mu \nu} \mathrm{e}^{-i n \frac{\phi}{2}: \Sigma}\right)\right]
$$

We define a distribution function from:

$$
j_{+}^{\mu}(x) \int \frac{\mathrm{d}^{3} p}{\varepsilon} p^{\mu} f(x, p)+N^{\mu}(x, p)
$$

The distribution function reads:

$$
f(x, p)=\frac{1}{2(2 \pi)^{3}} \sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{\beta}(-n \varpi) \cdot p} \operatorname{tr}\left(\mathrm{e}^{n \frac{\pi}{2}: \Sigma}\right)
$$

The ansatz misses all quantum corrections due to the tilde transform:

$$
\tilde{\beta}^{\mu}(-n \varpi)=\beta^{\mu}(x)+\sum_{k=1}^{\infty} \frac{(-i n)^{k}}{(k+1)!}\left(\varpi^{\mu \alpha_{1}} \varpi_{\alpha_{1} \alpha_{2}} \ldots \varpi^{\alpha_{k-1} \alpha_{k}}\right) \beta_{\alpha_{k}}(x)
$$

In the massless case $\bar{u}_{\lambda}(p) \gamma^{\mu} u_{\lambda}(p)$ is a light-like complex vector. Given an arbitrary lightlike vector q, non orthogonal to p.

$$
\bar{u}_{\lambda}\left(p^{\prime}\right) \gamma^{\mu} u_{\lambda}(p)=\frac{\bar{u}_{\lambda}\left(p^{\prime}\right) q u_{\lambda}(p)}{q \cdot p} p^{\mu}+\overbrace{\frac{\bar{u}_{\lambda}\left(p^{\prime}\right) p p u_{\lambda}(p)}{=0}}^{q \cdot p} q^{\mu}+N^{\mu}(p, q)
$$

We have:

$$
f_{\lambda}(x, p)_{(q)} \equiv \frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p^{\prime}}{2 \varepsilon^{\prime}} \mathrm{e}^{i\left(p^{\prime}-p\right) \cdot x}\left\langle\widehat{a}_{\lambda}^{\dagger}\left(p^{\prime}\right) \widehat{a}_{\lambda}(p)\right\rangle \frac{\bar{u}_{\lambda}\left(p^{\prime}\right) \dot{q} u_{\lambda}(p)}{2 q \cdot p}
$$

Exact distribution function at global equilibrium:

$$
f_{\lambda}(x, p)_{(q)}=\frac{1}{(2 \pi)^{3}} \frac{1}{2 p \cdot q} \sum_{n=1}(-1)^{n+1} \mathrm{e}^{-n \widetilde{\beta}(i n \phi) \cdot p} \operatorname{tr}\left(\frac{I+2 \lambda \gamma_{5}}{2} \mathrm{e}^{-i n \frac{\phi: \Sigma}{2} \not p q}\right)
$$

It is not a function of collisional invatiants only: $f(x, p) \neq f\left(p \cdot u \pm \Sigma_{n}: \varpi\right)$
[J.Y.Chen, D.Son, M.Stephanov, H.Y.Yee, Y.Yin, P.R.L. 113 (2014) 182302]

Spin vector

Spin vector of massive particles:

$$
S^{\mu}(p)=\frac{1}{2} \frac{\int \mathrm{~d} \Sigma \cdot p \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} W_{+}(x, p)\right)}{\int \mathrm{d} \Sigma \cdot p \operatorname{tr}\left(W_{+}(x, p)\right)}
$$

Exact spin vector at global equilibrium:

$$
S^{\mu}(p)=\frac{1}{2 m} \frac{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{b}(i n \phi) \cdot p} \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} \mathrm{e}^{-i n \frac{\phi: \Sigma}{2}} \not p\right)}{\sum_{n=1}^{\infty}(-1)^{n+1} \mathrm{e}^{-n \widetilde{b}(i n \phi) \cdot p} \operatorname{tr}\left(\mathrm{e}^{-i n \frac{\phi: \Sigma}{2}}\right)}
$$

Reproduces the known formula in the literature.

Conclusions \& Outlook

Exact Wigner function at general global equilibrium with thermal vorticity.
New operation on complex functions: the analytic distillation.
Expressions for the spin polarization vector and the distribution functions to all orders in \hbar and in thermal vorticity.

Outlook:

- Comparison between exact solution and commonly used ansatz

Thank you for the attention!

