Spin and Chirality in Hydrodynamics

Kenji Fukushima

 The University of Tokyo- The 6th Chirality, Vorticity and Magnetic Field in HIC -

Equilibrium with Spin / Angular Momentum

Conserved Charges

A black hole (maybe a QGP) has no hair:

Stable black holes are characterized by

[From Forbes]

Mass \longleftrightarrow Temperature
Charge

Density

Angular Momentum

[From our review on Femto-Novae]

Equilibrium with Rotation

Distribution Functions [Vilenkin 1979]

$$
\begin{aligned}
& \sum_{p} f^{(i)}(p)=n^{(i)} \quad \sum_{i, p} f^{(i)}(p) j^{(i)}=J^{z} \\
& \sum_{i, p} f^{(i)}(p) \varepsilon^{(i)}=e \quad \sum_{i, p} f^{(i)}(p) p^{(i)}=P^{z}
\end{aligned}
$$

Entropy should be maximized under constraints
Constraints from conservation laws

Lagrange multipliers

$$
\frac{\delta}{\delta f^{(i)}(p)} \sum_{j}\left[s^{(j)}-\sum_{q} f^{(j)}(q)\left(\alpha_{j}+\beta \varepsilon^{(j)}+\gamma j^{(j)}+\delta p^{(j)}\right)\right]=0
$$

Equilibrium with Rotation

Distribution Functions [Vilenkin 1979]

Shannon entropy

$$
\begin{array}{r}
s^{(i)}=\sum_{p}\left[\pm\left(1 \pm f^{(i)}(p)\right) \ln \left(1 \pm f^{(i)}(p)\right)-f^{(i)}(p) \ln f^{(i)}(p)\right] \\
\\
f^{(i)}(p)=\frac{1}{e^{\alpha_{i}+\beta \varepsilon \varepsilon^{(i)}+\gamma j^{(i)}+\delta p^{(i)} \mp 1}}
\end{array}
$$

Thermodynamic relations

$$
\beta=\frac{1}{T}, \quad \alpha_{i}=-\frac{\mu_{i}}{T}, \quad \gamma=-\frac{\omega}{T}, \quad \delta=-\frac{v^{z}}{T}
$$

Equilibrium with Rotation

Grand Canonical Descriptions

$$
d e=T d s+\mu d n+\omega_{\mu \nu} d J^{\mu \nu}
$$

$$
\begin{aligned}
& \langle n\rangle=\frac{\partial p}{\partial \mu} \\
& \left\langle J^{z}\right\rangle=\frac{\partial p}{\partial \omega^{z}}
\end{aligned}
$$

n : baryon density
μ : baryon chemical pot.
Phase Diagram
Hydro Trajectories

J : angular mom.
ω : spin chemical pot.

Equilibrium with Rotation

Baryon Density

Speculated Phase Diagram

Ideal hydrodynamics: $s^{\mu}=s u^{\mu} \quad j^{\mu}=n u^{\mu}$

$$
\partial_{\mu} T^{\mu \nu}=0 \rightarrow \partial_{\mu} s^{\mu}=0
$$

Eliminating $(\partial \cdot u) \rightarrow n \dot{s}-s \dot{n}=0 \rightarrow s / n=$ (const.)

Equilibrium with Rotation

Angular Momentum

Ideal hydrodynamics:

$$
\begin{aligned}
& s^{\mu}=s u^{\mu} \quad j^{\mu}=n u^{\mu} \\
& J^{\alpha \mu \nu}=J^{\mu \nu} u^{\alpha}
\end{aligned}
$$

Speculated Phase Diagram Jiang-Liao (2017)

\boldsymbol{s} and \boldsymbol{n} and \boldsymbol{J} all scale similarly with expansion
However, the angular momentum has some subtleties on /phase diagram/hydro counting/energy-mom. tensor

Rotating Thermodynamics

Rotating Hadron Resonance Gas

Pressure:

$$
p_{i}^{ \pm}= \pm \frac{T}{8 \pi^{2}} \sum_{\ell=-\infty}^{\infty} \int_{\left(\Lambda_{\ell}^{\mathrm{IR}}\right)^{2}} d k_{r}^{2} \int d k_{z} \sum_{\nu=\ell}^{\ell+2 S_{i}} J_{\nu}^{2}\left(k_{r} r\right)
$$

$$
\begin{aligned}
& \times \log \left\{1 \pm \exp \left[-\left(\varepsilon_{\ell, i}-\mu_{i}\right) / T\right]\right\} \\
& \varepsilon_{\ell, i}=\sqrt{k_{r}^{2}+k_{z}^{2}+m_{i}^{2}}-\left(\ell+S_{i}\right) \omega \\
& \Lambda_{\ell}^{\mathrm{IR}}=\xi_{\ell, 1} \omega \\
& \quad \text { Fujimoto-Fukushima-Hidaka (2021) }
\end{aligned}
$$

Rotating Thermodynamics

Rotating Hadron Resonance Gas

Larger pressure outside
Pressure:

Pressure is always inhomogeneous
$\langle j\rangle(r) d V \simeq d I(r) \omega \quad d I(r)=\rho r^{2} d V \longrightarrow \Delta p(r) \sim \# r^{2} \omega^{2}$

Rotating Thermodynamics

To make thinking simplified

Thermodynamics near $r=0$ simplifies the situation a lot.

Jiang-Liao (2017)
(Phase diagram with spin effects only)

The orbital angular momentum is dropped then, and only the spin remains finite.
(No need to worry about spatial inhomogeneity anymore.)

Hydrodynamics with Spin / Angular Momentum

Entropy Argument

A classic work by Son-Surowka (2009) found:
(The notation is slightly changed here)
Ideal Hydrodynamics $\sim \mathcal{O}\left(\partial^{0}\right)$
Entropy Current

$$
\begin{aligned}
& \mathcal{S}_{(0)}^{\mu}=s u^{\mu}=\frac{u_{\nu}}{T} T_{(0)}^{\mu \nu}+\frac{p}{T} u^{\mu}-\alpha j_{(0)}^{\mu} \quad(\alpha=\mu / T) \\
& \partial_{\mu} \mathcal{S}_{(0)}^{\mu}=0 \text { is easily concluded }
\end{aligned}
$$

Non-ideal Hydrodynamics $\sim \mathcal{O}(\partial)$

$$
\mathcal{S}^{\mu}=\frac{u_{\nu}}{T} T^{\mu \nu}+\frac{p}{T} u^{\mu}-\alpha j^{\mu} \quad \partial_{\mu} j^{\mu}=C_{\mathrm{anom}} E \cdot B
$$

Entropy Argument

Non-ideal Hydrodynamics $\sim \mathcal{O}(\partial)$

$$
\begin{aligned}
& \mathcal{S}^{\mu}=\frac{u_{\nu}}{T} T^{\mu \nu}+\frac{p}{T} u^{\mu}-\alpha j^{\mu} \quad \partial_{\mu} j^{\mu}=C_{\mathrm{anom}} E \cdot B \\
& \partial_{\mu} \mathcal{S}^{\mu}=T_{(1)}^{\mu \nu} \partial_{\mu} \frac{u_{\nu}}{T}+j_{(1)}^{\mu}\left(-\partial_{\mu} \alpha+\frac{E_{\mu}}{T}\right)-C_{\mathrm{anom}} \alpha E \cdot B
\end{aligned}
$$

Viscosities Ohm's law / Seebeck effect
How to realize the second law of thermodynamics?
Missing terms

$$
\delta j_{(1)}^{\mu}=\xi_{V} \omega^{\mu}+\xi_{B} B^{\mu}
$$

(CVE+CME)
Anomalously induced transport required thermodynamically!

Entropy Argument $+S$

Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)

Straightforward generalization but the way to incorporate the spin should explained now.

Entropy Argument $+S$

Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)
Noether current from rotational symmetry

$$
J_{\mathrm{can}}^{\alpha \mu \nu}=\frac{x^{\mu} \Theta^{\alpha \nu}-x^{\nu} \Theta^{\alpha \mu}}{\text { Orbital }}+\frac{\Sigma^{\alpha \mu \nu}}{\mathrm{Spin}}
$$

$\partial_{\alpha} J_{\mathrm{can}}^{\alpha \mu \nu}=0 ; \partial_{\mu} T^{\mu \nu}=0 \rightarrow \partial_{\alpha} \Sigma^{\alpha \mu \nu}=-2 \Theta_{(\mathrm{a})}^{\mu \nu}$

Anti-symmetric part of the energy-momentum tensor is the source of the spin (from the orbital part).

Entropy Argument $+S$

Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)
Previously...

$$
\partial_{\mu} \mathcal{S}^{\mu}=T_{(1)}^{\mu \nu} \partial_{\mu} \frac{u_{\nu}}{T}+j_{(1)}^{\mu}\left(-\partial_{\mu} \alpha+\frac{E / \mu}{T}\right)-C_{\text {anom }} \alpha E / B
$$

In spin hydro...

$$
\begin{aligned}
\partial_{\mu} S_{\mathrm{can}}^{\mu}= & \frac{\Theta_{(1)}^{\mu \nu} \partial_{\mu} \frac{u_{\nu}}{T}}{\Delta}-j_{(1)}^{\mu} \partial_{\mu} \alpha-\frac{\omega_{\rho \sigma}}{T} \partial_{\partial_{\mu} \Sigma^{\mu \rho \sigma}}^{\sum}
\end{aligned} \Theta_{(\mathrm{a})}^{\rho \sigma}
$$

Equilibrium (non-dissipative) limit: $\left.\omega_{\mu \nu}\right|_{\mathrm{eq}}=-\frac{T}{2} \partial_{[\mu} \frac{u_{\nu]}}{T}$

Entropy Argument + S

Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)
$\Theta_{(\mathrm{a})}^{\rho \sigma}\left(2 \frac{\omega_{\rho \sigma}}{T}+\partial_{[\mu} \frac{u_{\nu]}}{T}\right) \geq 0$
Tensor decomposition of dissipative (viscous) terms

$$
\begin{aligned}
& \longrightarrow \Theta_{(1 \mathrm{a})}^{\mu \nu}=2 q^{[\mu} u^{\nu]}+\phi^{\mu \nu} \\
& q^{\mu}=\lambda\left[T^{-1} \Delta^{\mu \alpha} \partial_{\alpha} T+(u \cdot \partial) u^{\mu}-4 \omega^{\mu \nu} u_{\nu}\right] \\
& \phi^{\mu \nu}=-\gamma\left(\Omega^{\mu \nu}-2 T^{-1} \Delta^{\mu \alpha} \Delta^{\nu \beta} \omega_{\alpha \beta}\right) \\
& \text { (Positive) Transport Coefficients introduced }
\end{aligned}
$$

Symmetric Form

Pseudo-Gauge Sym. in Energy-Momentum Tensor Fukushima-Pu (2020)

$$
\begin{aligned}
\mathcal{T}^{\mu \nu} & =\Theta^{\mu \nu}+\partial_{\lambda} K^{\lambda \mu \nu} \quad(\text { conserved current redefined }) \\
K^{\lambda \mu \nu} & =\frac{1}{2}\left(\Sigma^{\lambda \mu \nu}-\Sigma^{\mu \lambda \nu}+\Sigma^{\nu \mu \lambda}\right) \\
\mathcal{T}^{\mu \nu} & =\Theta^{\mu \nu}+\frac{1}{2} \partial_{\lambda}\left(u^{\lambda} S^{\mu \nu}-u^{\mu} S^{\lambda \nu}+u^{\nu} S^{\mu \lambda}\right) \\
& =\Theta_{(\mathrm{s})}^{\mu \nu}+\frac{1}{2}\left[\partial_{\lambda}\left(u^{\mu} S^{\nu \lambda}+u^{\nu} S^{\mu \lambda}\right)\right]
\end{aligned}
$$

Only the symmetric form is gauge inv. in gauge theories! But, there is no spin source...

Symmetric Form

Pseudo-Gauge Sym. in Energy-Momentum Tensor

 Fukushima-Pu (2020)$$
\begin{aligned}
\mathcal{T}^{\mu \nu} & =\Theta^{\mu \nu}+\frac{1}{2} \partial_{\lambda}\left(u^{\lambda} S^{\mu \nu}-u^{\mu} S^{\lambda \nu}+u^{\nu} S^{\mu \lambda}\right) \\
& =\Theta_{(\mathrm{s})}^{\mu \nu}+\frac{1}{2}\left[\partial_{\lambda}\left(u^{\mu} S^{\nu \lambda}+u^{\nu} S^{\mu \lambda}\right)\right]
\end{aligned}
$$

Spin induced terms are "renormalized" in conv. quantities

$$
\begin{aligned}
& 2 h^{(\mu} u^{\nu)}+\pi^{\mu \nu}+\frac{1}{2}\left[\partial_{\lambda}\left(u^{\mu} S^{\nu \lambda}+u^{\nu} S^{\mu \lambda}\right)\right] \\
& =\delta e u^{\mu} u^{\nu}+2\left(h^{(\mu}+\delta h^{(\mu}\right) u^{\nu)}+\pi^{\mu \nu}+\delta \pi^{\mu \nu}
\end{aligned}
$$

Symmetric Form

Pseudo-Gauge Sym. in Energy-Momentum Tensor Fukushima-Pu (2020)

$$
\begin{aligned}
\delta e & =u_{\rho} \partial_{\sigma} S^{\rho \sigma} \\
\delta h^{\mu} & =\frac{1}{2}\left[\Delta_{\sigma}^{\mu} \partial_{\lambda} S^{\sigma \lambda}+u_{\rho} S^{\rho \lambda} \partial_{\lambda} u^{\mu}\right] \\
\delta \pi^{\mu \nu} & =\partial_{\lambda}\left(u^{<\mu} S^{\nu>\lambda}\right)+\delta \Pi \Delta^{\mu \nu} \\
\delta \Pi & =\frac{1}{3} \partial_{\lambda}\left(u^{\sigma} S^{\rho \lambda}\right) \Delta_{\rho \sigma}
\end{aligned}
$$

An electric current $\boldsymbol{j} \propto \nabla \times S$ is implied... Spin Vorticity Effect

Symmetric Form

Pseudo-Gauge Sym. in Energy-Momentum Tensor Fukushima-Pu (2020)

$$
\begin{aligned}
& \partial_{\mu} \mathcal{S}^{\mu}=\cdots+\frac{1}{2}\left[\partial_{\lambda}\left(u^{\mu} S^{\nu \lambda}+u^{\nu} S^{\mu \lambda}\right)\right] \partial_{\mu} \frac{u_{\nu}}{T}-\frac{\omega_{\rho \sigma}}{T} \partial_{\lambda}\left(u^{\lambda} S^{\rho \sigma}\right) \\
&=\frac{1}{2} \frac{\partial_{\mu}\left[\partial_{\lambda}\left(u^{\lambda} S^{\mu \nu}+u^{\mu} S^{\nu \lambda}+u^{\nu} S^{\mu \lambda}\right) \frac{u_{\nu}}{T}\right]}{\text { Total derivative }} \\
& \mathcal{S}^{\mu} \rightarrow \mathcal{S}^{\prime \mu}-\frac{1}{2}\left[\partial_{\lambda}\left(u^{\lambda} S^{\mu \nu}\right)\right] \partial_{\mu} \frac{u_{\nu}}{T}-\frac{\omega_{\rho \sigma}}{T} \partial_{\lambda}\left(u^{\lambda} S^{\rho \sigma}\right)
\end{aligned}
$$

Absorbed in the entropy,

Canonical results

 then it is just canonical!
Symmetric Form

Contrary to some claims, it is possible to formulate the spin hydrodynamics with the symmetric form of the energy-momentum tensor.

Spin induced terms are renormalized by conventional physical quantities (energy density, heat current, etc) which could be measurable corrections.

Once renormalized, the formulation looks like the non-spin hydrodynamics - more clarified in S. Li, M. Stephanov, H.-U. Yee (2020)

This reminds me of...

Floquet Theory

$$
\hat{H}(t+T)=\hat{H}(t) \quad \begin{aligned}
& \text { Periodically driven system } \\
& \text { (e.g. rotating fields) }
\end{aligned}
$$

Time evolution can be decomposed into

$$
\hat{U}\left(t_{2}, t_{1}\right)=e^{-i \hat{K}\left(t_{2}\right)} e^{-i \hat{H}_{F}\left(t_{1}-t_{2}\right)} e^{i \hat{K}\left(t_{1}\right)}
$$

Transforming to the rotating frame, and a uniform time evolution, and then transforming back.

This reminds me of...

Floquet Theory
Decomposition is not unique... (gauge freedom)
Some terms are induced in the static effective Hamiltonian.
Rotating time-dependent $\boldsymbol{H}=$ Static \boldsymbol{H} with induced terms

Chiral anomaly retained? Yes, not through H, but K
Fukushima-Hidaka-Shimazaki-Taya (2021)

Further Questions

Phase Diagram with B and J not explored yet.
\square Technical difficulties (unremovable divergences)
\square Physics setup not well defined...
Hydrodynamics with E, B and J not revealed yet.
\square Spin MHD should be developed with anomalous couplings.
Floquet theory with quantum anomaly from the kick operator not discussed yet.
\square Magnus expansion is a complementary approach to understand the anomaly induced phenomena.

