
Spin, Chirality and Kinetic Theory

M. Stephanov

M. Stephanov Spin, Chirality and Kinetic Theory USB 2021 1 / 22



Introduction and motivation

Interesting applications of CME/CVE/SP in non-equilibrium
conditions – such as heavy-ion collisions, or high-frequency
response – beyond hydro.

Kinetic theory: a non-equilibrium description.

“Classical”, weakly coupled, but . . .

Important for understanding the mechanism of CME/CVE/SP and
the connection of hydro to microscopic dynamics. Kinetic theory is
a bridge between QFT and hydro.

This talk is about the features specific to kinetic theories with spin,
such as chiral kinetic theory.
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Puzzle 1: Anomaly

• Kin. regime: collisions are rare enough that motion is classical.

Each particle follows classical trajectory x(t), p(t). A “cloud” f(x,p)
evolves with time. In a comoving 6-volume, the number of particles can
only be changed by collisions:

df

dt
≡ ∂f

∂t
+
∂f

∂x
ẋ+

∂f

∂p
ṗ = C[f ].

Ignore collisions for now.

• The number of particles in the phase space cannot change?

• How can classical equation account for quantum anomaly?
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ṗ = C[f ].

Ignore collisions for now.

• The number of particles in the phase space cannot change?

• How can classical equation account for quantum anomaly?

Spin/Chirality

M. Stephanov Spin, Chirality and Kinetic Theory USB 2021 3 / 22



Spin

Spin for m 6= 0:

In p = 0 frame, spin vector s is a d.o.f. separate from p.

Obeys precession equation
ds

dt
=

ge

2m
s×B.

Spin for m = 0:

There is no p = 0 frame.

Spin s is not an independent d.o.f., but rather s ‖ p.

As p changes, there is a feedback from spin on e.o.m.s

Kinetic theory of particles obeying these e.o.m.s – CKT.
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Action, Berry phase and e.o.m.s

Change of momentum direction requires rotation
in (quantum) spin space, which adds a phase to
the action:

I =

∫
(p+A) · dx− (E + Φ)dt − ap · dp︸ ︷︷ ︸

Berry phase O(~)

Equations of motion by variation:

ẋ− v −
anom. velocity︷ ︸︸ ︷
ṗ× b = 0;

ṗ−E − ẋ×B = 0;

v = ∂E/∂p, E ≡ |p| − p̂ ·B
2|p|

.

Berry curvature:

b ≡∇p× ap =
p̂

2|p|2
.

The invariant measure now is
d3x d3p

(2π)3

√
G, with

√
G = 1 + b ·B.
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Chiral anomaly

Liouville eqn. (phase space conservation) now anomalous at p = 0:

∂

∂t

√
G+

∂

∂x
(
√
Gẋ) +

∂

∂p
(
√
Gṗ) = (E ·B) (∇p · b)︸ ︷︷ ︸

2πδ3(p)

,

Thus current J =
∫
p

√
Gf ẋ is not conserved:

∂n

∂t
+∇ · J =

1

4π2
E ·B f |p=0 ,

Berry “monopole” at p = 0 acts as source/sink
of particle number current.
Region p .

√
B is quantum.

“Level crossing” at p = 0.
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CME

Solving eoms

ẋ− v − ṗ× b = 0;

ṗ−E − ẋ×B = 0;

for ẋ:

J =

∫
p

√
Gf ẋ =

∫
p
fv︸ ︷︷ ︸

normal current

+ E ×
∫
p
fb︸ ︷︷ ︸

anom. Hall current

+B

∫
p
f(v · b)︸ ︷︷ ︸

CME

In equilibrium f(p) is f(E):

JCME = B
1

4π2

∫ ∞

0

f(E)dE

=
1

4π2
µB for FD T = 0.
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ṗ−E − ẋ×B = 0;

for ẋ:
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CVE

• First, define CVE in kinetic theory: response to rotation.

• Replace Lorentz force with Coriolis force (MS, Yin, 2012):

ṗ = 2E ẋ× ω i.e., B → 2Eω .

• Then CME −→ CVE

JCME = B

∫
p
f p̂ · b −→ JCVE = ω

∫
p

2Ef p̂ · b

For example, a distribution f(E) gives

JCVE =
ω

4π2

∫ ∞
0

f(E) 2EdE

=
1

4π2
µ2ω for FD T = 0.

M. Stephanov Spin, Chirality and Kinetic Theory USB 2021 8 / 22



CVE

• First, define CVE in kinetic theory: response to rotation.

• Replace Lorentz force with Coriolis force (MS, Yin, 2012):
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Puzzle 2: Where is Lorentz invariance?

I =

∫
(p+A) · dx− (|p|+ Φ)dt− ap · dp+

p̂ ·B
2|p|

dt

Modified Lorentz transfromation: PRL 113(2014)182302

δx = βt+
β × p̂
2|p|

, δp = βE +
β × p̂
2|p|

×B, δt = β · x.

Side jump.
Magnetic moment (m = p̂

2|p| ) needed by Lorentz invariance
(Son-Yamamoto)
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Boost, side jump and angular momentum conservation

Pin = Pout = 0
Sin = Sout = 0
Lin = Lout = 0

Pin = Pout

Sin = 0, Sout = O(~)

Lin = 0, Lout = 0???

“Side jump”
Collision kernel nonlocal
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Magnetization current

Conservation defines current up to a trivially conserved term (curl).

Liouville current:
J ′ =

∫
p

√
Gf ẋ

Noether current (by variation of action):

J ≡
∫
p

√
Gf

δI
δA

= J ′ +∇×
∫
p

√
Gf

p̂

2|p|︸ ︷︷ ︸
∇×M
magnetization current

Lorentz covariant
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Another way calculate CVE: rotating distribution

For a locally isotropic, but slowly rotating distribution (∇× u = 2ω):

f(E ′) = f(|p| − p · u(x)− 1

2
p̂ · ω)

In the (inertial) lab frame, the Noether current

J =

∫
p
f p̂︸ ︷︷ ︸

normal current

+ ∇×
∫
p
f
p̂

2|p|︸ ︷︷ ︸
magnetization current

equals to

J = −ω
2

(
1

3
+

2

3

)∫
p

∂f(E)

∂E
=

ω

4π2

∫ ∞
0

f 2pdp.

– the same as in the rotating frame.
As it should be, by Lorentz covariance of J .
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Collisions and Lorentz invariance

• To achieve equilibration we need collisions.

• Lorentz covariant form of kinetic equation for scalar particles:

∂µj
µ =

∫
BCD

CABCD︸ ︷︷ ︸
WCD→AB−WAB→CD

jµ = pµf

• Spin requires additional ingredients:

• f is not a Lorentz scalar (particle positions are frame-dependent).

• Side jump during collisions.
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Position and spin in relativistic mechanics

CM of a spinning body has a known ambiguity in classical relativity.

Total angular momentum is well-defined, but not CM position and spin:

Jµν = xµpν − xνpµ + Sµν ,

Ambiguity: shift x→ x+ ∆ and Sµν → Sµν + ∆νpµ −∆µpν .

pµS
µν = 0, i.e., S0i = 0 in rest frame, is insufficient to fix it for m = 0.

Together with
nνS

µν = 0

is sufficient, but requires choice of frame n (where S0i = 0,
and s ‖ p then, by pµSµν = 0).
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Spin and side jump

The two conditions pµSµν = 0 and nνSµν = 0 determine

Sµνn = λ
εµναβpαnβ

p · n

and the side jump of the position in frame n′ relative to n:

∆µ
nn′ = −

Sµνn′ nν

p · n
= λ

εµαβγpαnβn
′
γ

(p · n)(p · n′)
.

(this is finite boost generalization of side jump.
(Chen et al PRL 115(2015)021601)

Correspondingly: fn(x) = fn′(x+ ∆nn′).
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Collisionfull CKT

Chen et al

∂µj
µ =

∫
BCD

CABCD︸ ︷︷ ︸
WCD→AB−WAB→CD

jµ = pµf︸︷︷︸
normal current

+ Sµν∂νf︸ ︷︷ ︸
magnetization current

+

∫
BCD

CABCD ∆̄µ

︸ ︷︷ ︸
jump current

f , Sµν and ∆̄ depend on n

but

jµ is frame-independent!
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Side jump

∆̄ ≡ ∆nn̄ = λ
p ∧ n ∧ n̄

(p · n)(p · n̄)

is a side jump associated with
boost from Lab (n) to CM frame
(n̄) of the collision.

Collision side jumps are essential for L+ S conservation (and Lorentz
invariance) in the process of L↔ S transfer, i.e., spin
relaxation/polarization phenomena.

Side jumps also present for m 6= 0, since they are required by L+ S
conservation.
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Recent progress

Derivation of covariant CKT (also spin kinetics for m 6= 0) using
Wigner function formalism (collisionless) and Kadanoff-Baym
(including collisions):
Hidaka-Pu-Yang, Huang-Shi-Jiang-Liao-Zhuang, Gao-Liang-Wang-Wang,
Weickgenannt-Sheng-Speranza-Wang-Rischke, . . .

In worldline formalism: Mueler-Venugopalan

Derivation of hydrodynamics from CKT: Shi-Gale-Jeon
Interesting to extend to m 6= 0, calculate relaxation rates/kinetic
coefficients.

Spin equilibration: Li-Yee, Kapusta-Rrapaj-Rudaz, . . .

Shear-induced polarization (related to magnetization current)
appears essential to understanding the Λ “sign puzzle”:
Liu-Yin, Becattini-Buzzegoli-Palermo, Fu-Liu-Pang-Song-Yin, . . .
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H-theorem

Covariant entropy current:

Hµ = pµH+ Sµν∂νH +

∫
BCD

CABCD ∆̄µ ∂H
∂f

H = f ln
1

f
+ (1− f) ln

1

1− f
⇔ ∂µHµ ≥ 0

Equilibrium solution:

∂µHµ = 0 ⇔ ln
1− f
f

= β

(
p · u+

1

2
Sαβωαβ − µ

)
︸ ︷︷ ︸
linear comb. of conserved quantities

This is uniformly rotating, locally FD, distribution.
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CVE coefficients

Charge current: Jµ =
∑

q

∫
p qj

µ = nqu
µ + ξωµ.

At finite T , with a/p: ξ =
µ2

4π2
+
T 2

12
.

Energy-momentum (conserved and covariant):

Tµν =
∑
q

∫
p

1

2
( pµjν + pνjµ )

Energy flow (momentum density) P = ξT ω with

ξT =
µ3

6π2
+
µT 2

6
, (2 × Vilenkin’s ξT )

Entropy: H = ξH ω with ξH =
µT

6
.
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Flows and drag

MS-Yee, PRL116(2016)122302

Static obstacle (impurity) at rest in some frame U :

∂ · j = C + CU ; CU =

∫
AB

CAB

CAB = WB→A −WA→B

Drag (momentum transfer from impurity):

Fµ =

∫
AB

CAB (pA − pB)µ

vanishes for the solution with u = U .

No drag, but there are flows of charge, energy (as in superfluid) but
also entropy!
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Summary/Conclusions

Spin adds O(~) terms to EOMs:
Berry curvature and magnetic mom.

ẋ =
∂E
∂p

+ ṗ× b

Berry monopole accounts for CME
and anomaly (source/sink at p = 0).

CVE from CKT in two ways:
rotating frame or rotating distribution

B → 2Eω

J = 〈ẋ〉+∇×M
1/3 2/3

Nontrivial Lorentz invariance:
side jump to conserve L+ S;
and requires ∆E = −m ·B.

δx = βt+
β × p̂
2|p|

Lorentz invariance requires
side jumps in collision kernel
and jump currents
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