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Observational Overview



cosmic magnetism




why primordial magnetic fields?

e cosmic seed magnetic
fields

— astrophysical seeds

— cosmological seeds

e observations

PHYSICAL REVIEW VOLUME 75, NUMBER 8 APRIL 15, 1949

— Fermi data — blazars o e o

Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received January 3, 1949)

S p e C t r a A theory of the origin of cosmic radiation is proposed according to which cosmic rays are originated

and accelerated primarily in the interstellar space of the galaxy by collisions against moving mag-
metic fields. One of the features of the theory is that it yields naturally an inverse power law for the
spectral distribution of the cosmic rays. The chief difficulty is that it fails to explain in a straight-
forward way the heavy nuclei observed in the primary radiation

E. Fermi
“On the origin of the cosmic radiation”,
PRD, 75, 1169 (1949)




observations: Fermi data

NASA's Formi 1elescope resolves supernova remnants at GaV energies

Neronov and Vovk 2010
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Extragalactic magnetic fields constraints from simultaneous
GeV-TeV observations of blazars THE ASTROPHYSICAL JOURNAL LETTERS, 733:L21 (5pp), 2011 June 1 doi:10.1088/2041-8205/733/2/1.21
© 2011, The American Astronomical Society. Al sight rserved. Prited in the US A
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1SDC Data Centre for Astrophysics, Ch. d’Ecogia 16, 1290 Versoix, Switzerland TIME DELAY OF CASCADE RADIATION FOR TeV BLAZARS AND THE MEASUREMENT
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Received 5 January 2011 / Accepted 18 March 2011
ABSTRACT CHARLES D. DE[RMERI. MassiMo CAVADINE, SOEBUR RazzAQUE' %, JusTiN D. FINKE!, JaMES CHIANG®, AND BeNorT LoTT?

Context. Attenuation of the TeV y-ray flux from distant blazars through pair production with extragalactic background light leads
0 the development of electromagnetic cascades and subsequent, lower energy, GeV secondary y-ray emission. Due to the deflection
of VHE cascade electrons by extragalactic magnetic fields (EGMF), the spectral shape of this arriving cascade y-ray emission is
dependent on the strength of the EGMF. Thus, the spectral shape of the GeV-TeV emission from blazars has the potential to probe
the EGMF strength along the line of sight to the object. Constraints on the EGMF previously derived from the gamma-ray data suffer
from an uncertainty related to the non-simultancity of GeV and TeV band observations.

Aims. We investigate constraints on the EGMF derived from observations of blazars for which TeV observations simultaneous with
those by Fermi telescope were reported. We study the dependence of the EGMF bound on the hidden assumptions it rests upon.
Methods. We select blazar objects for which simultaneous Fermi/LAT GeV and Veritas, MAGIC or HESS TeV emission have been
published. We model the development of electromagnetic cascades along the gamma-ray beams from these sources using Monte
Carlo simulations, including the calculation of the temporal delay incurred by cascade photons, relative to the light propagation time
of direct y-rays from the source.

Results. Constraints on the EGMF could be derived from the simultancous GeV-TeV data on the blazars RGB J0710+591,
1ES 0229+200, and 1ES 1218+304. The measured source flux level in the GeV band is lower than the flux of the expected cascade
component calculated under the assumption of zero EGMF. Assuming that the reason for the suppression of the cascade component is
the extended nature of the cascade emission, we find that B 2 10-'5 G (assuming an EGMF correlation length of >1 Mpc) is consistent
with the data. Alternatively, the assumption that the suppression of the cascade emission is caused by the time delay of the cascade
photons the data are consistent with B 2 107 G for the same correlation length.

Key words. astroparticle physics — magnetic fields — radiative transfer
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ABSTRACT

Recent claims that the strength Bigmr: of the intergalactic magnetic field (IGMF) is 10~'% G are based on upper
limits to the expected cascade flux in the GeV band produced by blazar TeV photons absorbed by the extragalactic
background light. This limit depends on an assumption that the mean blazar TeV flux remains constant on timescales
Z2(Bigmr/107'8G)?/(E /10 GeV)? yr for an IGMF coherence length 21 Mpc, where E is the measured photon
energy. Restricting TeV activity of 1ES 0229+200 to ~23—4 years during which the source has been observed leads
to a more robust lower limit of Bigyr 2 10~'® G, which can be larger by an order of magnitude if the intrinsic
source flux above ~25-10 TeV from 1ES 0229+200 is strong.



primordial or astrophysical origin?

E ASTROPHYSICAL JOURNAL LETTERS, 727:L4 (4pp), 2011 January 20 doi:10.1088/2041-8205/727/1/L.4
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LOWER LIMIT ON THE STRENGTH AND FILLING FACTOR OF EXTRAGALACTIC MAGNETIC FIELDS -11
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ABSTRACT

High-energy photons from blazars can initiate electromagnetic pair cascades interacting with the extragalactic
photon background. The charged component of such cascades is deflected and delayed by extragalactic magnetic
fields (EGMFs), thereby reducing the observed point-like flux and potentially leading to multi-degree images in the
GeV energy range. We calculate the fluence of 1ES 02294200 as seen by Fermi-LAT for different EGMF profiles
using a Monte Carlo simulation for the cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT
suggests that the EGMF fills at least 60% of space with fields stronger than @(10~'6 to 10~'%) G for lifetimes of
TeV activity of O(10% to 10%) yr. Thus, the (non-)observation of GeV extensions around TeV blazars probes the
EGMF in voids and puts strong constraints on the origin of EGMFs: either EGMFs were generated in a space filling
manner (e.g., primordially) or EGMFs produced locally (e.g., by galaxies) have to be efficiently transported to fill
a significant volume fraction as, e.g., by galactic outflows.
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Figure 4. Cumulative volume filling factor C(B) for the four different EGMF
models found in MHD simulations.
(A color version of this figure is available in the online journal.)
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4. SUMMARY

We have calculated the fluence of 1ES 0229+200 as seen
by Fermi-LAT using a Monte Carlo simulation for the cascade
development. We have discussed the effect of different EGMF
profiles on the resulting suppression of the point-like flux
seen by Fermi-LAT. Since the electron cooling length is much
smaller than the mean free path of the TeV photons, a sufficient
suppression of the point-like flux requires that the EGMF fills
a large fraction along the line of sight toward 1ES 0229+200,
f 2 0.6. The lower limit on the magnetic field strength in
this volume is B ~ O(10~'%) G, assuming 1ES 0229+200
is stable at least for 10* yr, weakening by a factor of 10 for
t = 10? yr. These limits put very stringent constraints on
the origin of EGMFs. Either the seeds for EGMFs have to
be produced by a volume filling process (e.g., primordial) or
very efficient transport processes have to be present which
redistribute magnetic fields that were generated locally (e.g.,
in galaxies) into filaments and voids with a significant volume
filling factor.
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improved data

S. Archambault et al. [VERITAS P ;
Collaboration], i F 3=100x1076
“Search for Magnetically o T o emaen ;
Broadened Cascade Emission From o o
Blazars with VERITAS,” Astrophys. AT AT |

J. 835,288 (2017). Fgure . hedpendnce of e it of o sl g s

the cascade fraction f. for 1ES 1218+304. This is compared against the width
of the angular distribution measured in data, Waata.

M. Ackermann, et al. [Fermi-LAT For the cutoff energy of 10 TeV
Collaboration], assumed for the intrinsic spectrum of

p ) . 1ES 1218+ 308, the first pair
The Searchfor Spat'lal Extension production interaction occurs larger

in High-latitude Sources Detected 10 Mpc from the source.

by the Fermi Large Area Consequently, this study probes the
Telescope 7 magnetic field strength in areas
V4

distant from the source, sampling
Astrophys. J. Suppl. 237, 32 cosmic voids, rather than matter-rich

(2018). regions.



known vs. unknown

What we know What we do not know
— The amplitude of the — When and how
magnetic field magnetic fields were
— The spectral shape of the generated
magnetic field — What were initial
— The correlation length scale conditions

Two Options:
Cosmological and Astrophysical Scenarios



MHD cosmological simulations
by Donnert et al. 2008

Ejection Primordial
Z=4 2=4
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Cosmological Magnetogenesis



primordial magnetogenesis

F. Hoyle in Proc. “La structure et
I’ evolution de |’ Universe ” (1958)

inflation

phase transitions
supersymmetry
string cosmology
topological defects

* & & o o




primordial magnetogenesis

> Inflatlon » Phase transitions
the correlation length larger than = bubble collisions - first
horizon order phase transitions
- scale invariant spectrum QCDPT or EWPT
. well agree with the lower bounds  causal fields
. difficulties: = |imited correlation length

« backreaction & symmetries
violations

» chiral magnetic effect



testing the early universe

TIME AFTER THE BIG BANG
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primordial MHD turbulence

* primordial plasma is perfect conductor

* interaction between primordial magnetic fields and
fluid (plasma)

* development of turbulence

Penders, Jones, Porter, 2019

other sources of primordial turbulence?



primordial velocity field

* Cosmological Phase Transitions

Bubbles collisions and
nucleation

Baym et al. 1995
Quashnock, et al. 1989

®\Tm vacuum »
{) C




chiral magnetic effect

v Asymmetry between right- v Magnetogenesis in
and left-handed fermions — the early universe —
amplification (exponential seed helical
growth) of helical magnetic magnetic fields,
fields, chital magnetic effect Boyarsky et al.
(CME), Vilenkin 1980 2012

Bz .7 - 5 J. Y Turbulent chiral

@) @ . b @ magnetic inverse

b | @ & = |5 cascade in the early

@y 2 T i universe —

| Brandenburg et al.

2017

Kharzeev, Liao, Voloshin, Wang, 2015



Primordial MHD Evolution



describing primordial turbulence
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Ey(k,t) and Ey(k,t)
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turbulence development
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where D/Dt = 9/0t + u - V is the advective derivative,
t is the conformal time, p is the density, u is the bulk
velocity, Sij = 3(uij + uji) — 36;;V - u is the rate-of-
strain tensor, v is the viscosity, and 7 is the magnetic
diffusivity.

Kahniashvili et al. 2010
7

FIG. 2: Evolution of the turbulent magnetic field after turning off the forcing at time ¢ = 14¢1. The B, component is shown

on the periphery of the computational domain.



our universe is almost perfect conductor

magnetically dominant

107®

Ey(k,t) and Ey(k,t)

1078k "

1077 .

1 10 100
k/k,

FIG. 5: Magnetic (solid) and kinetic (dashed) energy spectra
in 12 regular time intervals of 4¢;, after having turned off
the forcing, with (smoothed) spectra at k = 50k; decreasing
as t increases. v = 7 = 10~* in units of (kft;)~'. The
straight lines have slopes 3, 2, —2, and —1/2, with the first
two near k = k; and the last two near k = 10k;. Thickest
lines (solid and dashed) indicate the last time, which is 44 t,
since turning off the forcing. The intermediate thickness solid
line, the highest or almost highest line for k/k; > 10, is the
initial magnetic spectrum for this computation.

kinetically dominant

Ey(k,t) and Ey(k,t)

1 10 100
k/k,

FIG. 6: Same as Fig. 5, but for a case where the initial mag-
netic field had a k* spectrum close to equipartition with the
velocity field, and then the forcing was turned off. Results
are shown for nine times at intervals of 6t;. v =17 = 10~*
in units of (k7t;)~'. The straight lines have slopes 2 and 3.
Thickest lines (solid and dashed) indicate the last time, which
is 48ty since turning off the forcing. The intermediate thick-
ness solid line, the highest solid line for 5 < k/k; < 10, is the
initial magnetic spectrum for this computation.

Kahniashvili et al. 2010



high resolution 3D compressible
MHD simulations - decay
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inverse transfer
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FIG. 1: (Color online) (a) Magnetic (solid lines) and kinetic
(dashed lines) energy spectra for Run A at times t/74 = 18,
130, 450, and 1800; the time t/7a = 450 is shown as bold
lines. The straight lines indicate the slopes k* (solid, blue),
k* (dashed, blue), and k=2 (red, solid). (b) Same for Run B,
at t/7a = 540, 1300, and 1800, with t/7a = 1300 shown as
bold lines. The insets show Eyy and Fx compensated by Ewr.

FIG. 2: (Color online) Contours of (a) B:(z,y) and (b)
u;(z,y) for Run A. The insets show a zoom into the small

Brandenburg, Kahniashvili, Tevzadze 2015 square in the lower left corner.
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classes of MHD turbulence
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TABLE I: Scaling exponents and relation to physical invari- ) — D o ,
ants and their dimensions. gz (t) —~ t Pi for i — K or hI

B P q inv. dim.

1 10/7~143 2/7~028 L ][] 2 6 x 19.
3 8/6~1.33 2/6~0.333 '
2 6/5=120 2/5=0.400
1
0

4/4=1.00 2/4=0500 (A2;) [z]*[t]2
2/30.67 2/3~0.667 (A-B) [z]*[t]2 Brandenburg & Kahniashvili 2017
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dynamo effect and chiral cascade
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Fic. 1.— Sketch of the magnetic energy spectrum of chiral-
magnetically driven turbulence.

FIG. 2: Ex(k,t) and Em(k,t) for t/T = 16, 60, 200, 800, Brandenburg, etal 2017b

2000, 6000, and 14, 000.
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inflationary magnetogensis
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evolution through structure formation
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evolution through structure formation

uniform scale-invariant helical non-helical
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evolution through structure formation
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Primordial Turbulence Signatures



observational signatures include

Density perturbations - scalar mode

" Fast and slow magnetosound waves
Vorticity perturbations - vector mode

= Alfven waves

Gravitational waves - tensor Mode

* No analogy in Newtonian description

Early Universe sz — 87TGTH£

* BBN & N Late Stages
e CMB temperature and

o : : * Matter power spectrum
polarization anisotropies

* Jeans scale
* Gravitational waves * LSS clustering



observational signatures
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FIG. 4: A representative B-mode polarization power spec-
trum sourced by a scale-invariant PMF. Shown are the passive
tensor mode (green), the compensated vector mode (orange),
the gravitational lensing contribution (blue) and the combi-
nations of the lensing and vector B modes (red) and all three
components (magenta). The PMF contribution is based on
Bimpe = 2.5 nG, n = —2.9, a, /apur = 10°. The data points
are from the POLARBEAR first-season B-mode power spec-
trum. The third point is the 95% upper limit assuming the
band power is positive.
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Fig. 8. PMF amplitude versus the spectral index for the baseline
Planck 2015 case. C+P denotes the case where both compen-
sated and passive modes are considered, whereas C indicates the
case with only compensated modes.The two contours represent

the 68 % and 95 % confidence levels.
Planck 2015 Results
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gravitational waves primordial turbulence?
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NANOGrav 12.5 years observations:

NANOGrav 12.5-year sensitivity range of 1-100 nHz
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Possible Sources:

Astrophysical:
v’ Super massive black hole binary (SMBHB)

(Phinney 2001): y=13/3

Cosmological:

v Bubbles collisions (Kosowsky et. Al. 1993)

v' Inflation (Vagnozzi 2021)

v Cosmic strings (Blanco-Pillado et al. 2021)

v Seed magnetic fields (Neronov et. al. 2021)

v Hydrodynamic and MHD Turbulence
(Brandenburg et al. 2021)
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numerical simulations

To account properly non- 52 22 | ,IT 167rGTTT
linear processes (MHD) Ot2 —¢C U q3c2 "W
Not be limited by the short
) T'T,phys . — ,
duration of the phase h;-I]‘-T = a.h.ij PIYS dtphy& adt
transitions
Brandenburg et al (2021)
Two stages turbulence decay
* Forced turbulence a7 | R
* Free decay o)\ 1 cont |

The source is present till

recombination (after the oo
field is frozen in)

Results — strongly initial < I
conditions dependent T

m(t) =&n (1+At/T)™F Evolution of E,,(t) and E,,(t) for nonhelical (left) and

helical (right) cases. Orange, black, blue, and red are
Eaw = (a&N™ /K )? for k; =2, 6, 20, and 60, respectively.



Results
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FIG. 5: h3Qcw (f) and h.(f) at the present time for all four runs presented in Table I, for the nonhelical (left) and helical
(right) runs. The 2o confidence contour for the 30-frequency power law of the NANOGrav 12.5-year data set is shown in gray.
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Next steps

Determine the mechanisms insuring the presence of viable
turbulent sources and correspondingly correct initial

conditions:

CAR)

L)

CR)

D)

L)

K/
000

*

D)

L)

10°

¢ Primordial magnetogenesis
» Bubble collisions/nucleation — more realistic models
* Sound waves as a source for turbulence

Axions driven turbulence and axion like particles
driven inflationary new physics

» Cihiral sources and gravitational waves polarization
* Low temperature re and pre-heating
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Cross-correlating data between different
observations:

< PTAs

«* Astrometric missions: Gaia, Theia
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conclusion

The high conductivity of primordial plasma insures
possibility of hydro and magneto-hydrodynamics
turbulence development in the early universe

Turbulence experiences decay through the expansion of
the universe

Primordial MHD turbulence is a plausible explanation of the
observed magnetic fields in galaxies, clusters, and voids (if
confirmed)

Primordial turbulence signatures include:

— gravitational waves

— cosmic microwave background fluctuations

— effects of the matter power spectrum (large scale structure)



Thank Youl!

Questions?



