Lattice results on the QCD phase diagram at finite vorticity

V.V. Braguta

JINR
4 November 2021

In collaboration with

- A.Yu. Kotov
- D.D. Kuznedelev
- A.A. Roenko
- D.A. Sychev
V. Braguta, A. Kotov, D. Kuznedelev, and A. Roenko, JETP Lett. 112, 9-16 (2020),

Phys.Rev.D 103 (2021) 9, 094515, e-Print: 2110.12302

Rotation of QGP in heavy ion collisions

- QGP is created with non-zero angular momentum in non-central collisions

Rotation of QGP in heavy ion collisions

Hydrodynamic simulations (Phys.Rev.C 94, 044910 (2016))

- Au-Au: left $\sqrt{s}=200 \mathrm{GeV}$, right $b=7 \mathrm{fm}$,
- $\Omega \sim(4-28) \mathrm{MeV}(\Omega \sim 20 \mathrm{MeV} \Rightarrow v \sim c$ at distances 7 fm$)$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega=\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \frac{k_{B} T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- $\Omega \sim 10 \mathrm{MeV}$
- Relativistic rotation of QGP

Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega=\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \frac{k_{B} T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- $\Omega \sim 10 \mathrm{MeV}$
- Relativistic rotation of QGP

How relativistic rotation influences QCD?

Recent theoretical works

- A. Yamamoto, Y. Hirono, Phys.Rev.Lett. 111 (2013) 081601
- A. Yamamoto, Eur.Phys.J.A 57 (2021) 6, 211
- S. Ebihara, K. Fukushima, K. Mameda, Phys. Lett. B 764 (2017) 94-99
- M.N. Chernodub, S. Gongyo, Phys.Rev.D 95 (2017) 9, 096006
- M.N. Chernodub, S. Gongyo, JHEP 01 (2017) 136
- H. Zhang, D. Hou, J. Liao, e-Print: 1812.11787 [hep-ph]
- Y. Jiang, J. Liao, Phys.Rev.Lett. 117 (2016) 19, 192302
- Xun Chen, Lin Zhang, Danning Li, Defu Hou, Mei Huang, e-Print: 2010.14478
- Y. Fujimoto, K. Fukushima, Y. Hidaka, Phys.Lett.B 816 (2021) 136184
- M.N. Chernodub, Phys.Rev.D 103 (2021) 5, 054027

Common features

- Mostly the studies are carried out in NJL (chiral transition)
- Critical temperature of the chiral phase transition drops with angular velocity
- Explanation: polarization of the chiral condensate (Phys.Rev.Lett. 117 (2016) 19, 192302)
- Critical temperature of the confinement transition drops with angular velocity

Study of rotating QGP

- Our aim: study rotating QCD within lattice simulations
- Rotating QCD at thermodynamic equilibrium
- At the equilibrium the system rotates with some Ω
- The study is conducted in the reference frame which rotates with QCD matter
- QCD in external gravitational field
- Boundary conditions are very important!

Details of the simulations

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- The metric tensor

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1-r^{2} \Omega^{2} & \Omega y & -\Omega x & 0 \\
\Omega y & -1 & 0 & 0 \\
-\Omega x & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- Geometry of the system: $N_{t} \times N_{z} \times N_{x} \times N_{y}=N_{t} \times N_{z} \times N_{s}^{2}$

Details of the simulations

- Partition function (\hat{H} is conserved)

$$
Z=\operatorname{Tr} \exp [-\beta \hat{H}]
$$

- Euclidean action

$$
\begin{gathered}
S_{G}=-\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \sqrt{g_{E}} g_{E}^{\mu \nu} g_{E}^{\alpha \beta} F_{\mu \alpha}^{(a)} F_{\nu \beta(a)} \\
S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
+\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}++F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
\left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{gathered}
$$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$
- One could expect that rotation decreases the critical temperature

Details of the simulations

- Ehrenfest-Tolman effect: In gravitational field the temperature is not constant in space at thermal equilibrium

$$
\begin{gathered}
T(r) \sqrt{g_{00}}=\text { const }=1 / \beta \\
T(r) \sqrt{1-r^{2} \Omega^{2}}=1 / \beta
\end{gathered}
$$

- Rotation effectively heats the system from the rotation axis to the boundaries $T(r)>T(r=0)$
- One could expect that rotation decreases the critical temperature
- We use the designation $T=T(r=0)=1 / \beta$

Details of the simulations

Boundary conditions

- Periodic b.c.:
- $U_{x, \mu}=U_{x+N_{i}, \mu}$
- Not appropriate for the field of velocities of rotating body
- Dirichlet b.c.:
- $\left.U_{x, \mu}\right|_{x \in \Gamma}=1,\left.\quad A_{\mu}\right|_{x \in \Gamma}=0$
- Violate Z_{3} symmetry
- Neumann b.c.:
- Outside the volume $U_{P}=1, \quad F_{\mu \nu}=0$
- The dependence on boundary conditions is the property of all approaches
- One can expect that boundary conditions influence our results considerably, but their influence is restricted due to the screening

Screening of boundary conditions

Details of the simulations

Sign problem

$$
\begin{gathered}
S_{G}=\frac{1}{2 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left[\left(1-r^{2} \Omega^{2}\right) F_{x y}^{a} F_{x y}^{a}+\left(1-y^{2} \Omega^{2}\right) F_{x z}^{a} F_{x z}^{a}+\right. \\
+\left(1-x^{2} \Omega^{2}\right) F_{y z}^{a} F_{y z}^{a}++F_{x \tau}^{a} F_{x \tau}^{a}+F_{y \tau}^{a} F_{y \tau}^{a}+F_{z \tau}^{a} F_{z \tau}^{a}- \\
\left.-2 i y \Omega\left(F_{x y}^{a} F_{y \tau}^{a}+F_{x z}^{a} F_{z \tau}^{a}\right)+2 i x \Omega\left(F_{y x}^{a} F_{x \tau}^{a}+F_{y z}^{a} F_{z \tau}^{a}\right)-2 x y \Omega^{2} F_{x z} F_{z y}\right]
\end{gathered}
$$

- The Euclidean action has imaginary part (sign problem)
- Simulations are carried out at imaginary angular velocities $\Omega \rightarrow i \Omega_{I}$
- The results are analytically continued to real angular velocities
- This approach works up to sufficiently large $\Omega(\Omega<50 \mathrm{MeV})$

Details of the simulations

The critical temperature

- Polyakov line

$$
L=\left\langle\operatorname{Tr} \mathcal{T} \exp \left[i g \int_{[0, \beta]} A_{4} d x^{4}\right]\right\rangle
$$

- Susceptibility of the Polyakov line

$$
\left.\chi=N_{s}^{2} N_{z}\left(\left.\langle | L\right|^{2}\right\rangle-\langle | L| \rangle^{2}\right)
$$

- T_{c} is determined from Gaussian fit of the $\chi(T)$

Rotation at zero temperature

- $\left\langle t r F_{\mu \nu}^{2}\right\rangle \neq 0, \quad\left\langle T_{\mu \nu}\right\rangle=\epsilon g_{\mu \nu}, \quad \epsilon \sim\left\langle t r F_{\mu \nu}^{2}\right\rangle$
- In rotating frame $\left\langle T_{0 i}\right\rangle \neq 0$
- The ground state of our system is "rotating vacuum"

Results of the calculation (Neumann b.c.)

Results of the calculation (Dirichlet b.c.)

Results of the calculation (Periodic b.c.)

Results of the calculation

- The results can be well described by the formula ($C_{2}>0$)

$$
\frac{T_{c}\left(\Omega_{I}\right)}{T_{c}(0)}=1-C_{2} \Omega_{I}^{2} \Rightarrow \frac{T_{c}(\Omega)}{T_{c}(0)}=1+C_{2} \Omega^{2}
$$

- The critical temperature rises with angular velocity
- The results weakly depend on lattice spacing and the volume in z-direction

Dependence on the transverse size

- The results can be well described by the formula

$$
\frac{T_{c}(\Omega)}{T_{c}(0)}=1-B_{2} v_{I}^{2}, \quad v_{I}=\Omega_{I}\left(N_{s}-1\right) a / 2, \quad C_{2}=B_{2}\left(N_{s}-1\right)^{2} a^{2} / 4
$$

Dependence on the transverse size

- The value of B_{2} depends on b.c.
- Periodic b.c.: $B_{2} \sim 1.3$
- Dirichlet b.c.: $B_{2} \sim 0.5$
- Neumann b.c.: $B_{2} \sim 0.7$

Simulation with fermions (preliminary)

- Lattice simulation with Wilson fermions: $m_{\pi} \simeq 700 \mathrm{MeV}$
- Critical couplings of both transitions coincide
- Critical temperatures are increased (at least for $m_{\pi} \simeq 700 \mathrm{MeV}$)

Simulation with fermions (preliminary)

- One can introduce angular velocities for gluons Ω_{G} and fermions Ω_{F}
- $\Omega_{F} \neq 0, \Omega_{G}=0$ decreases critical temperatures (in agrement with NJL)
- $\Omega_{F}=0, \Omega_{G} \neq 0$ increases critical temperatures
- $\Omega_{G}=\Omega_{F} \neq 0$ gluons win (for heavy pion mass)

Conclusion

- Lattice study of rotating gluodynamics has been carried out
- Critical temperature of the confinement/deconfinement transition rises with rotation
- First results on rotating QCD
- QCD with heavy pions: competition between fermions and gluons ($m_{\pi} \sim 700 \mathrm{MeV}$ gluons win): Critical temperatures rise

Conclusion

- Lattice study of rotating gluodynamics has been carried out
- Critical temperature of the confinement/deconfinement transition rises with rotation
- First results on rotating QCD
- QCD with heavy pions: competition between fermions and gluons ($m_{\pi} \sim 700 \mathrm{MeV}$ gluons win): Critical temperatures rise

THANK YOU!

