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CHIRAL MEDIA
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CHIRAL MEDIA

Dirac and Weyl semimetals 

New Territory of CME Physics: 3D Semimetals
The anomalous transport phenomena are universal phenomena across 
boundaries of disciplines, encompassing a wide range of chiral systems!

Weyl semimetal  
(non-degenerated bands) 

TaAs 
NbAs 
NbP 
TaP 

Dirac semimetal  
(doubly degenerated bands) 

ZrTe5 

Na3Bi, 

Cd3As2 

One should expect to see CME in semimetals — 
CME in fact becomes a signal of chiral fermions! 
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CHIRAL MEDIA

Axionic stars/clumps, dark matter
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PROBING THE MATTER: CHERENKOV AND 
TRANSITION RADIATION

Classical Cherenkov radiation is 
emitted by a charged particle that 
moves faster than the phase 
velocity of light: vn>1

Kirill Tuchin Phys. 572 Lecture Notes 75

There are two interesting limiting cases. In free space � ! 0 and we have

B� =
q

c⇡
⇡�

Z 1

0
J1(xb)x e

�x(z/v�t) dx =
q�

c

b

(b2 + �2(z/v � t)2)3/2
. (7.23)

This is precisely the magnetic field of a uniformly moving charge in free space, i.e. boosted Coulomb potential. If the
medium is a very good conductor, then we can expand the square roots in (7.22):

B� =
q

c⇡

2⇡

�

Z 1

0
J1(xb)x

2 exp

⇢
1

2
��2

✓
2x2

�2�2

◆⇣z
v

� t
⌘�

dx =
q

c

b�

2( zv � t)2
exp

⇢
�

b2�

4(t �
z
v )

�
. (7.24)

This is reminiscent of quasi-static fields that we discussed in Ch. 4, see in particular (4.41). This is not surprising
because the quasi-static approximation is applicable to good conductors.

• Additional reading: http://arxiv.org/pdf/1305.5806.pdf.

§2. Cherenkov radiation.

A. Electromagnetic field in the radiation zone.

To understand what electromagnetic radiation by a fast particle in medium, we need to examine the electromagnetic
field, which we computed in the previous section, in the radiation zone sr? � 1. Recall the asymptotic behavior of
the modified Bessel functions at large values of argument, see (1.180)

K⌫(sr?) =

r
⇡

2sr?
e�sr? . (7.25)

Clearly, the integral over ! in (7.14)–(7.17) is convergent only if Re s > 0. Suppose that the medium is transparent,
i.e. ✏ is a real function. Then there are two possibilities. (i) ��2 > ✏(!). Then, s is real and the wave decays
exponentially. In this case there is no radiation. (ii) ��2 < ✏(!) (velocity of particle is larger than the speed of light
in the medium). In such a case, electromagnetic field decreases as 1/

p
r?, which gives finite contribution to the power

at large r?, and corresponds to a cylindrical wave.
Let us investigate the case ��2 < ✏(!) in more detail. We have from (7.11)

s = ±
i!

c

r
✏(!) �

1

�2
. (7.26)

To decide which sign is physical, we need to take into account a small imaginary part of ✏. Writing ✏ = ✏0 + i✏00 and
expanding (7.26) in ✏00 we get

s = ±
i!

c

r
✏0 �

1

�2

✓
1 +

i✏00

2(✏0 � ��2)

◆
. (7.27)

Since ✏00 > 0 (see text after (5.117)) and ✏0 > ��2 the real part of s is positive only if we choose the minus sign in
(7.26).

Now, consider the phase of a monochromatic component of electromagnetic field in the radiation zone, which can
be read o↵ (7.14)–(7.16) and (7.25):

exp
n
i!

⇣z
v

� t
⌘

� sr?
o

= exp
n

�i!t + ikzz + ikzr?
p

�2✏ � 1
o
, (7.28)

where we used the dispersion relation ! = kzv and (7.27). On the other hand, phase (7.28) is a solution to Lorentz-
invariant wave equation. Therefore it must have form �ikµxµ = �i!t + k · r. Let ✓ be the polar angle of k with
respect to z-axis. Then, kz = k cos ✓ and k? = k sin ✓ = kz tan ✓. Hence, k · r = kzz + kzr? tan ✓. Comparing this
with (7.28) we conclude that tan ✓ =

p
�2✏ � 1. This implies that

cos ✓ =
1

�
p
✏

=
1

�n
, (7.29)

where in transparent medium
p
✏ is just the index of refraction. We observe that electromagnetic field in the radiation

zone has a form of a wave propagating at angle ✓, given by (7.29), to the fast particle velocity v = vẑ. Therefore, if
�n > 1, a charged particle moving through transparent medium with constant velocity emits electromagnetic waves
with frequency ! and at angle ✓. This is the Cherenkov radiation.

Notice that in view of (7.7) and (7.5), Bk! · v = Bk! · k = Ek! · k = 0.

Classical transition radiation is emitted 
by a charged particle that moves 
through inhomogeneous matter.
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33. Passage of particles through matter 33

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of
light (Cherenkov radiation) or if it crosses suddenly from one medium to another with
different optical properties (transition radiation). Neither process is important for energy
loss, but both are used in high-energy and cosmic-ray physics detectors.

θc

γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 33.26: Cherenkov light emission and wavefront angles. In a dispersive
medium, θc + η != 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s direction, for a particle
with velocity βc in a medium with index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g . in gases. (33.43)

The threshold velocity βt is 1/n, and γt = 1/(1−β2
t )1/2. Therefore, βtγt = 1/(2δ+δ2)1/2,

where δ = n − 1. Values of δ for various commonly used gases are given as a function of
pressure and wavelength in Ref. 79. For values at atmospheric pressure, see Table 6.1.
Data for other commonly used materials are given in Ref. 80.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s frequency,
and let k = 2π/λ be its wavenumber. The photons propage at the group velocity
vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium, this simplies to
vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media the radiation is
concentrated in a thin conical shell whose vertex is at the moving charge, and whose
opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 33.26.) This cone has a opening half-angle η, and, unless the medium is
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Figure 33.27: X-ray photon energy spectra for a radiator consisting of 200 25µm
thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single
surface (dashed line). Curves are shown with and without absorption. Adapted
from Ref. 88.
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FERMI’S MODEL OF COLLISIONAL ENERGY LOSS

4

Without loss of generality we assume that �� > 0 which implies that k22 > k21. The plasma

permittivity is well described by

✏ = 1�
!2
p

!2 + i!�
, (9)

where !p is the plasma frequency and the damping constant � is related to the electrical conduc-

tivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the Poynting vector out of a cylinder of

radius a coaxial with the particle path. For a particle moving with velocity v along the z-axis the

total loss per unit length reads

�d"

dz
= 2⇡a

Z 1

�1
(E�Bz � EzB�)dt = 2aRe

Z 1

0
(E�!B

⇤
z! � Ez!B

⇤
�!

)d! . (10)

To calculate the integral over ! we first isolate the contribution of the pole in 1/✏ at ! = !p using

the rule

1

✏
=

!2

!2 � !2
p + i0

= �i⇡!2
p�(!

2 � !2
p) + P !2

!2 � !2
p

, (11)

where it is assumed that � ⌧ !p. Substituting the field components from (6) into (10) and

replacing 1/✏ by its imaginary part one derives

�d"pole

dz
=

q2!2
p

4⇡v2
K0 (a!p/v) Re

n
a
q
!2
p/v

2 � �2
�K1

⇣
a
q
!2
p/v

2 � �2
�

⌘o
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over !

comes from those domains of ! where at least one of k⌫ ’s is imaginary. There are two such domains

(A) and (B). Domain (A) k21 < k22 < 0. Inspection of (7) reveals that k22 < 0 if either !2 > !2
+ or

!2 < !2
� where

!2
± =

�2(1/v2 � 1)!2
p + �2

�/v
2 ±

q
[2(1/v2 � 1)!2

p � �2
�/v

2]2 � 4(1/v2 � 1)2!4
p

2(1/v2 � 1)2
. (13)

Additionally, if !p < ��/
p
2 the inequality

0 < ! <

s
�2
�/2� !2

p

1/v2 � 1
(14)

The energy loss rate = flux of the Poynting vector out of cylinder of radius a 
coaxial with the particle path:

Maxwell equations

6

A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads

�d"

dz
=

q2

4⇡

!2
p

v2
ln

1.12v

a!p

� q2

4⇡

Z

k
2
1<0<k

2
2

!

v2✏

(s2 � k21)(v
2✏� 1) + �2

�

k21 � k22
d! . (19)

The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
p/�� < ! < �2��,

where � = (1� v2)�1/2. Expanding the integrand at large frequencies, assuming ! � ��, yields

� q2

4⇡

1

2��

Z
�
2
��

✓
���!

�2
+ �2

�

◆
d! , (20)

where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains

�d"

dz
=

q2

4⇡v2

✓
!2
p ln

v

a!p

+
1

4
�2�2

�

◆
. (21)

We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields

�d"

dz
=

q2

4⇡

!2
p

v2
K0(a!p/v)(a!p/v)K1(a!p/v) +

q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! . (22)

The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as

✏(!) = 1�
!2
p

!2 � !2
0 + i!�

(23)

In this case (22) is generalized as

�d"

dz
=
q2

4⇡

!2
p

v2
K0

⇣
a
q
!2
p + !2

0/v
⌘⇣

a
q
!2
p + !2

0/v
⌘
K1

⇣
a
q
!2
p + !2

0/v
⌘

+
q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! (24)

<latexit sha1_base64="XzHDpTv9Uoe/6kGo9CRxjMlP2Fw="></latexit>

a ! 0

(small) Cherenkov radiation contribution emerges at 
<latexit sha1_base64="6L+AyA7OY1UqkUDDmFwiuiFi1z8="></latexit>

a ! 1

7

Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p

✏(0) and to ! < !0 if v > 1/
p

✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by

dW

d!
= � d"

dz!d!

���
a!1

=
q2

4⇡

(
1

2

✓
1� 1

v2

◆
+

��
2!

+
(1 + v2)�2

�

8v2!2
+ . . .

)
, ! < ���

2 . (25)

which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
q2

4⇡

�2
��

2

4
. (26)

We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]

dW quant

d!
=

q2

(4⇡)2!

⇢
��

✓
x2

2
� x+ 1

◆
� m2

"
x

�
, ! < !M , (27)

† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

Fermi (1940)

<latexit sha1_base64="uoSkn/uY4h/B3zSD44vPnCbSdV0=">AAACf3icbVBdixMxFE3Hr3X86uqjL8EiKmKZEdH1QVnUBx9XsLsLzVBu0ts2bpIZkjtKGebf+Gt81Rf/jel0wLXrgcDhnHO5N0dWRgfKst+D5NLlK1ev7V1Pb9y8dfvOcP/ucShrr3CiSlP6UwkBjXY4IU0GTyuPYKXBE3n2fuOffEUfdOk+07rCwsLS6YVWQFGaDd9yIS0XDqQBLkhbDFHh72aitLiEN88037Iu96GXn37pyWw4ysZZB36R5D0ZsR5Hs/3BEzEvVW3RkTIQwjTPKioa8KSVwTYVdcAK1BkscRqpg3hR0XQfbfnDqMz5ovTxOeKden6iARvC2sqYtECrsOttxP960u5spsVB0WhX1YRObRcvasOp5JsW+Vx7VGTWkYDyOt7O1Qo8KIpdp8Kjw2+qtBbcvBGyneZF02wKHOVty1Nx3q2dpi4gVkD8b6xNY7n5bpUXyfHzcf5ynH96MTo86GveY/fZA/aY5ewVO2Qf2RGbMMW+sx/sJ/uVDJJHyTjJttFk0M/cY/8gef0H5GTBeg==</latexit>r⇥B! = �i!D! + j! etc.

<latexit sha1_base64="dG/Ucdo/MxqTuxS3IkNn1Z2qpds="></latexit>

�d"

dz
=

q2

4⇡v2
!2
p ln

v

a!p
UR limit:Energy loss: 
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r ·B = 0 ,

r ·E = ⇢� cr✓ ·B ,

r⇥E = �@tB ,

r⇥B = @tE + j + c(@t✓B +r✓ ⇥E) ,

Kharzeev, McLerran, 
Warringa (2008)

Chiral magnetic effect

Sikivie (84), Wilczek (87), Carroll et al (90)

LMCS = LQED + cA✓(x) ~E · ~B

j = ��B

QED IN CHIRAL MEDIUM: MAXWELL-CHERN-SIMONS 

“chiral (magnetic) conductivity”

Anomalous Hall Effect

Fukushima, Kharzeev, 
Warringa (2008)

Let the field θ be homogenous and weekly time-dependent ✓̇ = const
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EM FIELDS OF A CHARGE IN CHIRAL MEDIUM

2

Cherenkov radiation that exist only in the chiral medium. This is in striking contrast with the

collisional energy loss in non-chiral medium which is independent of the particle’s energy in the

ultra-relativistic limit. We also argue that in a wide range of particle energies, quantum corrections

due to the recoil e↵ects are small.

The collisional energy loss spectrum is given by Eqs. (10)–(18). It contains the anomalous

contribution, mostly due to the chiral Cherenkov radiation, which is clearly seen in Fig. 1 for

Quark-Gluon Plasma and in Fig. 2 for a Weyl semimetal. In the later case the photon spectrum is

strongly enhanced in the ultraviolet and X-ray regions which makes it amenable to experimental

investigation.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIUM

Electrodynamics of isotropic chiral medium is characterized by the emergence of the anomalous

current proportional to the magnetic field viz. jA = ��B, where �� is the chiral conductivity

[1, 10]. As a result, the field equations for a point charge q moving in the positive z direction with

constant velocity v read:

r⇥B = @tD + ��B + qvẑ�(z � vt)�(b) , (1a)

r ·D = q�(z � vt)�(b) , (1b)

r⇥E = �@tB , (1c)

r ·B = 0 , (1d)

where b denotes the transverse components of the position vector r. The solution to (1) with

D! = ✏(!)E!, where Ez = 1
2⇡

R1
�1Ez!e�i!td! etc., was derived in [8] as a superposition of the

helicity states � = ±1, which are the eigenstates of the curl operator in the Cartesian coordinates:

B(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

X

�

✏�k
qẑ · ✏⇤

�k�k

k2? + !2(1/v2 � ✏)� ���k
, (2a)

E(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

 
X

�

✏�k
iq!ẑ · ✏⇤

�k

k2? + !2(1/v2 � ✏)� ���k
+ k̂

q

ivk"

!
, (2b)

where k = k? + (!/v)ẑ is the wave vector, k =
q
k2? + !2/v2 its length and ✏�k are the circular

polarization vectors satisfying the conditions ✏�k · ✏⇤
µk = ��µ, ✏�k · k = 0 and the identity

ik̂ ⇥ ✏�k = �✏�k . (3)

EM field of a point charge

Can be solved for constant chiral conductivity, e.g.

B� =
eb

8⇡x2�
e
� b2�

4x�


� cos

✓
b2��
4x�

◆
+ �� sin

✓
b2��
4x�

◆�
High energy approximation:

B!

Br
Bz v

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider

B!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
(
[k2? + !2(1/v2 � ✏)]

X

�

�✏�k(ẑ · ✏⇤
�k) + ��k

X

�

✏�k(ẑ · ✏⇤
�k)

)
(4)

Its azimuthal component is

B�!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
⇢
[k2? + !2(1/v2 � ✏)]

�ik?
k

cos ✓ + ��k
�kzk?
k2

sin ✓

�
, (5)

where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:
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Summations over � are performed using the polarization sums given in Appendix of [8]. The space-
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evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.
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FIG. 2: Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not

shown). Electrical conductivity � = 5.8 MeV. Solid line on both panels corresponds to B = B� at �� = 0.

Broken lines correspond to B� (dashed), Br (dashed-dotted) and Bz (dotted) with �� = 15 MeV on the left

panel and �� = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is di↵erent.

we find for the longitudinal field component:

Bz =
eb

4⇡x�
e
� b2�

4x�


� sin

✓
b2��
4x�

◆
� �� cos

✓
b2��
4x�

◆�
. (67)

It is seen in (65) and (67) that the field components Br and Bz are generated only at a finite chiral

conductivity ��.

Eqs. (62),(63) and (67) is the main result of this paper. It shows that at finite ��, magnetic

field of a point charge acquires two components that are absent in the chirally neutral medium:

the radial and the longitudinal components. All field components oscillate at early times. This is

clearly seen in Fig. 2. The Bz and Br components change sign at light-cone times

x(n)� =
b2��

4[arctan ��

� + ⇡n]
, n = 0, 1, . . . , (68)

while the B� components changes sign at

x̃(n)� =
b2��

4[� arctan �
��

+ ⇡n]
, n = 0, 1, . . . , (69)

The latest oscillation corresponds to n = 0; it increases with ��.

VI. DISCUSSION AND SUMMARY

There are two major results presented in this paper.

(i) I showed that solutions to the Maxwell equations are not stable in the presence of the chirality

imbalance. It is possible that electromagnetic field collapses into a set of magnetic knots. This

B!

B!

Br

Bz σ"=0.26σ

σ"=2.6σ

EM FIELDS OF A CHARGE IN CHIRAL MEDIUM
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FERMI’S MODEL WITH ANOMALOUS CURRENT

4

Without loss of generality we assume that �� > 0 which implies that k22 > k21. The plasma

permittivity is well described by

✏ = 1�
!2
p

!2 + i!�
, (9)

where !p is the plasma frequency and the damping constant � is related to the electrical conduc-

tivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the Poynting vector out of a cylinder of

radius a coaxial with the particle path. For a particle moving with velocity v along the z-axis the

total loss per unit length reads

�d"

dz
= 2⇡a

Z 1

�1
(E�Bz � EzB�)dt = 2aRe

Z 1

0
(E�!B

⇤
z! � Ez!B

⇤
�!

)d! . (10)

To calculate the integral over ! we first isolate the contribution of the pole in 1/✏ at ! = !p using

the rule

1

✏
=

!2

!2 � !2
p + i0

= �i⇡!2
p�(!

2 � !2
p) + P !2

!2 � !2
p

, (11)

where it is assumed that � ⌧ !p. Substituting the field components from (6) into (10) and

replacing 1/✏ by its imaginary part one derives

�d"pole

dz
=

q2!2
p

4⇡v2
K0 (a!p/v) Re

n
a
q
!2
p/v

2 � �2
�K1

⇣
a
q
!2
p/v

2 � �2
�

⌘o
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over !

comes from those domains of ! where at least one of k⌫ ’s is imaginary. There are two such domains

(A) and (B). Domain (A) k21 < k22 < 0. Inspection of (7) reveals that k22 < 0 if either !2 > !2
+ or

!2 < !2
� where

!2
± =

�2(1/v2 � 1)!2
p + �2

�/v
2 ±

q
[2(1/v2 � 1)!2

p � �2
�/v

2]2 � 4(1/v2 � 1)2!4
p

2(1/v2 � 1)2
. (13)

Additionally, if !p < ��/
p
2 the inequality

0 < ! <

s
�2
�/2� !2

p

1/v2 � 1
(14)

Hansen, KT (2021)

For simplicity consider
<latexit sha1_base64="jPEGuuWWD1s17aDqcbpq7WvkdU4="></latexit>

!0 = 0

UR limit

6

A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads

�d"

dz
=

q2

4⇡

!2
p

v2
ln

1.12v

a!p

� q2

4⇡

Z

k
2
1<0<k

2
2

!

v2✏

(s2 � k21)(v
2✏� 1) + �2

�

k21 � k22
d! . (19)

The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
p/�� < ! < �2��,

where � = (1� v2)�1/2. Expanding the integrand at large frequencies, assuming ! � ��, yields

� q2

4⇡

1

2��

Z
�
2
��

✓
���!

�2
+ �2

�

◆
d! , (20)

where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains

�d"

dz
=

q2

4⇡v2

✓
!2
p ln

v

a!p

+
1

4
�2�2

�

◆
. (21)

We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields

�d"

dz
=

q2

4⇡

!2
p

v2
K0(a!p/v)(a!p/v)K1(a!p/v) +

q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! . (22)

The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as

✏(!) = 1�
!2
p

!2 � !2
0 + i!�

(23)

In this case (22) is generalized as

�d"

dz
=
q2

4⇡

!2
p

v2
K0

⇣
a
q
!2
p + !2

0/v
⌘⇣

a
q
!2
p + !2

0/v
⌘
K1

⇣
a
q
!2
p + !2

0/v
⌘

+
q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! (24)
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Chiral Cherenkov radiation emerges at a→∞ even if
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Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p
✏(0) and to ! < !0 if v > 1/

p
✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by

dW

d!
= � d"

dz!d!

���
a!1

=
q2

4⇡

(
1

2

✓
1� 1

v2

◆
+

��
2!

+
(1 + v2)�2

�

8v2!2
+ . . .

)
, ! < ���

2 . (25)

which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
q2

4⇡

�2
��

2

4
. (26)

We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]

dW quant

d!
=

q2

(4⇡)2!

⇢
��

✓
x2

2
� x+ 1

◆
� m2

"
x

�
, ! < !M , (27)

† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].
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We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost
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radiation.
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In the UR limit, energy loss is due to the chiral cherenkov radiation
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The dispersion relation

Radiative instability of quantum electrodynamics in chiral matter
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I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

→ photon becomes space- or timelike

Radiative instability of quantum electrodynamics in chiral matter

Kirill Tuchin1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

(Dated: June 29, 2018)

Modification of the photon dispersion relation in chiral matter enables 1 ! 2 scattering.

As a result, the single fermion and photon states are unstable to photon radiation and

pair production respectively. The corresponding spectra are derived in the ultra-relativistic

approximation. It is shown that the polarization of the produced and decayed photons is

determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the

spectra is computed.

I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

forbidden in vacuum, but allowed in chiral medium

Radiative instability of quantum electrodynamics in chiral matter

Kirill Tuchin1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

(Dated: June 29, 2018)

Modification of the photon dispersion relation in chiral matter enables 1 ! 2 scattering.

As a result, the single fermion and photon states are unstable to photon radiation and

pair production respectively. The corresponding spectra are derived in the ultra-relativistic

approximation. It is shown that the polarization of the produced and decayed photons is

determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the

spectra is computed.

I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

Pair production: ) ��� < 0

Photon radiation: k2 < 0 ) ��� > 0

In radiation gauge: r2A = @2
tA� ��r⇥A

<latexit sha1_base64="gaWdcD4TCeFeJiIURWMRIekyiNM="></latexit>

� =helicity 4

A solution to (12) can be written as

' = eik?·x? exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
. (14)

It follows from (9) that

'0 = �e� · k?
!

' . (15)

Substituting (14) and (15) into (8) yields the photon wave function in the high energy approxima-

tion

A =
1p
2!V

✏� e
i!z+ik?·x?�i!t exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
, (16)

where the polarization vector

✏� = e� � e� · k?
!

ẑ . (17)

Clearly, ✏� · k = 0 up to the terms of order k2?/!
2 and ��/!. If the scattering process happens

entirely within a single domain, then the chiral conductivity is constant. However, if a domain

wall is located at, say, z = 0, than the chiral conductivity is di↵erent at z < 0 and z > 0. This is

why a possible z-dependence of �� is indicated in (16). Even though the boundary conditions on

the domain wall induce a reflected wave, it can be neglected in the ultra-relativistic approximation

[12, 17].

It is seen in (1) that half of the infrared modes |k| < ��� have Im! > 0 implying exponential

growth of the corresponding wave function with time. This infrared instability and its applications

are discussed in many recent publications [2, 6, 18? –33]. However, it is only tangentially related

to the radiative instability discussed in this paper, even though both originate from the same

dispersion relation. In particular, the infrared instability can be ignored in the ultra-relativistic

limit ! � k? � |��| because equation

kz ⇡ ! � 1

2!

�
k2? � ���!

�
(18)

has only real solutions.

III. FERMION WAVE FUNCTION

The free fermion wave function  at high energy " � p?,m can be obtained using the same

procedure. Since it satisfies the Dirac equation we are looking for a solution in the form

 =
1p
2"V

u(p)�ei"z�i"t , (19)

UR approx.:
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QUANTUM CHERENKOV RADIATION

Photon 
radiation 
rate

Kappa is negative if

6

The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

Total rate of energy loss

Vanishes as ℏ→0 

Quantum anomaly!
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (36) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2
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⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2"x

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (38)

dW�
dx

= 0 . (39)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (38) is of the order ↵2.

The total energy radiated by a fermion per unit time is

�"

T
=

Z 1

0

dW+

dx
x"dx =

1

3
↵Q2��" , (40)

where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0
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dz e

iz
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Z 1

0
dz e

iz
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2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i
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, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum
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2

�X
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q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).
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where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).

Chiral Cherenkov effect: photon radiation at

4

the resonant behavior, while the other one is suppressed. Whether the photon spectrum is right-

or left-hand polarized depends on the sign of ��.

Since µ2 ⇡ ����!, the angular distribution of the photons peaks at the angle #2 = q2?/!
2 =

��/x2"2 with respect to the fermion momentum. If the fermion mass is negligible and bearing in

mind that most photons are soft (x ⌧ 1) we can estimate #2 ⇡ ���/!.

III. APPLICATIONS

1. As the first application, consider jet emission from the quark-gluon plasma (QGP) with

a homogenous chiral conductivity. QGP is isotropic at the scales of interest here, hence the

corresponding case is (i). Jets in heavy-ion collisions are produced by the highly energetic color

particles. If a jet is originated by a quark (as opposed to a gluon) we expect radiation of circularly

polarized photons in a cone with the opening angle # ⇠
p
|��|/! with respect to the jet momentum.

The chiral conductivity is an unknown parameter. If we estimate it as �� ⇠ 10 MeV, then

! = 1 GeV photons are emitted at the angle # ⇠ 0.1, provided that the jet energy " is much larger

than !. Thus the observation of circularly polarized photons at angle # to the jet direction would

be an indication of the chiral transition radiation.

2. We have seen that the main feature of the transition radiation from chiral matter is the

emergence of the resonance factor in (11). It arises entirely due to the energy and momentum

conservation in a 1 ! 2 process involving a photon with complex “mass” µ. Thus we expect to see

the same resonant factor as in (11) arising in the case (ii) which deals with an anisotropic matter.

The calculation of the pre-factor requires a more careful analysis that will be presented elsewhere.

In the high energy limit Eq. (4) reduces to µ2 ⇡ ��!b cos�, where � is the angle between b and

the photon momentum. The soft photon emission angle in the massless limit is #2 ⇡ �b cos�/!.

Similarly to the previous case (i), the photon spectrum is circularly polarized. One can verify

that now � is negative only if � cos� > 0 and x < [1 +m2/(�"b cos�)]�1. Thus the polarization

direction depends on whether b points towards or away from the boundary. Furthermore, since µ2

is proportional to cos�, the radiation is maximal when � = 0 or ⇡ and vanishes in the perpendicular

direction. To estimate the characteristic radiation angle discussed above, consider a Weyl semimetal

with b = (↵/⇡)80 eV [18, 19]. An electron with energy about GeV moving parallel to b (� = 0)

would radiate, say, ! = 10 MeV photons at # = 1.3 · 10�4. This can be tested by injecting a beam

of energetic electrons normal to a Weyl semimetal film and measuring the polarization and angular

distribution of the photons emitted in a cone with the opening angle # around the beam direction.

can become negative!
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M = �eQū(p0)�µu(p)✏⇤µ ⇥ 4⇡"x(1� x)�(q2? + �)
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7

Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.

(Transition radiation in ordinary materials corresponds to

8

Away from the poles, one can neglect � in (42). The resulting spectrum coincides with the

spectrum of the transition radiation once �’s are replaced by tr = m2x2+m2
�(1�x), where m� is

the e↵ective photon mass [12, 17]. Unlike the spontaneous radiation, the transition radiation is not

possible in a uniform matter. Indeed, the amplitude (34) vanishes because tr > 0. Another key

di↵erence between the transition and spontaneous radiation is that the former has a finite classical

limit ~ ! 0, while the later one does not. The spontaneous radiation spectrum (43),(44) is a purely

quantum e↵ect that vanishes in the classical limit ~ ! 0. This is of course not surprising at all

because it originates from a quantum anomaly.

Integral over the momentum q? in (42) is dominated by the poles at q2? = �� and q2? = �0�.

There are two distinct cases depending on whether �� and �0
� have the same or opposite signs.

Consider first �� > 0 and �0
� > 0. In this case the photon spectrum is approximately right-

polarized. Keeping only the terms proportional to 1/� = A/4 one obtains

dW++

dx
=

↵Q2

8x

✓
x2

2
� x+ 1

◆
|+ + 0+|+

x4m2

2

�
✓(x0 � x)✓(x00 � x) , (43)

where the double plus subscript indicates that the helicity is positive in both domains. The

maximum energy fraction taken by the photon x0 is defined in (36); x00 is the same as x0 with ��

replaced by �0
�. Consider now �0

� > 0 and �� < 0. The integration gives

dW+�
dx

=
↵Q2

8x

⇢✓
x2

2
� x+ 1

◆
|0+|+

x4m2

4

�
✓(x00 � x)

+

✓
x2

2
� x+ 1

◆
|�|+

x4m2

4

�
✓(x0 � x)

�
. (44)

Clearly, photons radiated to the left of the domain wall (z < 0) are right-polarized, while those

radiated to its right (z > 0) are left-polarized.

V. PAIR PRODUCTION

Momentum conservation prohibits the spontaneous photon decay �(k) ! f̄(p)+f(p0) in vacuum.

However, in chiral matter this channel is open due to the chiral anomaly. This is the cross-channel

of the photon radiation computed in the previous section. The scattering matrix is now given by

S = i(2⇡)3�(! � "0 � ")�(k? � p? � p0
?)

Mp
8""0!V 3

, (45)

where

M =� eQū(p0)�µv(p)✏µ

Z +1

�1
dz exp

⇢
i

Z z

0

q̃2? + ̃�(z0)

2!x(1� x)
dz0

�
. (46)

finite at ℏ→0)

Contribution of the pole at q2? + � = 0 is the chiral Cherenkov radiation.

The rest is the “chiral transition radiation”
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x=0.01 solid: right-hand polarization

dashed: left-hand polarization

Quark energy 10 GeV

• Charged particles traveling through the chiral medium emit electromagnetic 
radiation sensitive to the chiral anomaly.  

• It is circularly polarized and has resonant peaks at angles proportional to 
the anomaly
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APPLICATIONS: WEYL SEMIMETAL 10
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FIG. 2. Collisional energy loss spectrum of electron with � = 100 in a semimetal with parameters !p =

0.5 eV, � = 0.025 eV (so that its conductivity is 10 eV at room tempearture) [41] and m = 0.5 MeV. Solid

line: �� = 0.19 eV [42, 43], dashed line: �� = 0. !± are defined in (13). The seeming discontinuity at

! = !+ is a visual artifact.
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Very small recoil

9

FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with � = 20 in Quark-Gluon

Plasma. Plasma parameters: !p = 0.16T , � = 1.11T [36], m = T = 250 MeV. Solid line: �� = 10 MeV,

dashed line: �� = 7 MeV, dotted line: �� = 0. !± are defined in (13).

e↵ect. The chiral Cherenkov radiation emerges as a bump between !� and !+. The relevant

parameters are inferred from the lattice calculations [36] or by the way of educated guess in the

case of the chiral conductivity. The quantum corrections due to the recoil would shift the UV

endpoint of the anomalous contribution to the left since !M < !+ = ���2. However, the overall

e↵ect of the recoil is not that significant since !M = 0.44" is not too close to unity. The rate of

energy loss due to the anomaly is about 10�4 of particle energy per unit fm regardless of particle

energy as indicated by (26). This is of course much smaller than the QCD energy loss mechanisms

[37] at not too high energies; however the QCD fraction decreases as 1/
p
".

In anisotropic chiral medium such as Weyl semimetals there is an additional anomalous current

jAH = b ⇥ E that generates the anomalous Hall e↵ect [18, 38, 39]. Parameter b is the distance

between the Weyl nodes in the momentum space (not to be confused with the impact parameter

used in Sec. II). The spectrum of the corresponding chiral Cherenkov radiation was computed in

[40]. In the ultra-relativistic limit, the energy loss equals the total radiated power and is given

by (29) with �� replaced by b (assuming that electron’s velocity is parallel to b). To estimate the

energy loss in a semimetal reported in [42, 43] we use b = (↵/⇡)80 eV. According to (30) at room

temperatures most of energy is lost due to chiral Cherenkov radiation. The energy loss spectrum

for a typical semimetal computed using the results of Sec. III is displayed in Fig. 2. The recoil

e↵ect is negligible since !M . ���2 ⌧ ". One observes significant enhancement of the ultraviolet

and X-ray regions of the photon spectrum which presents an exciting opportunity for experimental

study of the chiral anomaly e↵ects.

8

where x = !/" is the fraction of the fermion energy carried away by the radiated photon and

!M =
"

1 +m2/(��")
. (28)

Photon spectrum always extends all the way to !M since !M < ���2. Moreover, since !M < "

and hence x < 1, (27) is valid even at � � m/��, in contrast to the classical formula (25). The

classical limit of (27) is recovered in the limit x ⌧ 1: the term in (27) proportional to �� reduces

to the second term in (25), while the second term in (27) reduces to the first term in (25). The

total radiation power is

P quant =
q2

4⇡

��"

3
, (29)

where the terms of order m/" = 1/� were neglected. Evidently, the e↵ect of the recoil on the

energy loss is to reduce the energy dependence from "2 to ".

IV. DISCUSSION

The classical calculation performed in this paper captures the main feature of the energy loss

in chiral medium, namely, its much faster increase with the particle energy that in a non-chiral

medium. Taking the recoil e↵ects into account, the energy loss is proportional to energy ". In

contrast, energy dependence of the collisional energy loss in non-chiral medium is at most logarith-

mic. The conventional radiative energy loss is likewise proportional to energy in the non-coherent

Bethe-Heitler (BH) regime. The ratio of the energy loss due to the chiral Cherenkov (�C) e↵ect

to the conventional radiative loss is

�"�C

�"BH
⇠ ��

e2T
⇠ µ5

T
, (30)

where T is the plasma temperature and µ5 is the axial chemical potential. The coherence e↵ects

reduce the energy dependence of the radiative energy loss to
p
" (see review [25]). This significantly

increases the ratio (30). In this paper we assumed that distribution of the topological charge density

is homogenous and therefore there are no coherence e↵ects on the chiral Cherenkov radiation. This

is a good approximation as long as the coherence length associated with photon radiation is smaller

than the distance over which the topological charge density significantly varies. This maybe the case

in the nuclear matter where there is evidence—supported by the theoretical arguments [26, 27]—of

the topological domains of nearly constant density in wide range of temperatures [28–35].

Fig. 1 displays the spectrum of the collisional energy loss by a fast particle in Quark-Gluon

Plasma computed using the results of Sec. III. We emphasize that this is a purely electromagnetic

Neglecting coherence effects: >>1 in a TaAs at room temp.
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FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with � = 20 in Quark-Gluon

Plasma. Plasma parameters: !p = 0.16T , � = 1.11T [36], m = T = 250 MeV. Solid line: �� = 10 MeV,

dashed line: �� = 7 MeV, dotted line: �� = 0. !± are defined in (13).

e↵ect. The chiral Cherenkov radiation emerges as a bump between !� and !+. The relevant

parameters are inferred from the lattice calculations [36] or by the way of educated guess in the

case of the chiral conductivity. The quantum corrections due to the recoil would shift the UV

endpoint of the anomalous contribution to the left since !M < !+ = ���2. However, the overall

e↵ect of the recoil is not that significant since !M = 0.44" is not too close to unity. The rate of

energy loss due to the anomaly is about 10�4 of particle energy per unit fm regardless of particle

energy as indicated by (26). This is of course much smaller than the QCD energy loss mechanisms

[37] at not too high energies; however the QCD fraction decreases as 1/
p
".

In anisotropic chiral medium such as Weyl semimetals there is an additional anomalous current

jAH = b ⇥ E that generates the anomalous Hall e↵ect [18, 38, 39]. Parameter b is the distance

between the Weyl nodes in the momentum space (not to be confused with the impact parameter

used in Sec. II). The spectrum of the corresponding chiral Cherenkov radiation was computed in

[40]. In the ultra-relativistic limit, the energy loss equals the total radiated power and is given

by (29) with �� replaced by b (assuming that electron’s velocity is parallel to b). To estimate the

energy loss in a semimetal reported in [42, 43] we use b = (↵/⇡)80 eV. According to (30) at room

temperatures most of energy is lost due to chiral Cherenkov radiation. The energy loss spectrum

for a typical semimetal computed using the results of Sec. III is displayed in Fig. 2. The recoil

e↵ect is negligible since !M . ���2 ⌧ ". One observes significant enhancement of the ultraviolet

and X-ray regions of the photon spectrum which presents an exciting opportunity for experimental

study of the chiral anomaly e↵ects.

The same qualitative picture in QCD (after e→g, including color factors etc.)

QCD/QED:
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the momentum space. The latter is encoded in the photon propagator which can be derived using

the Maxwell-Chern-Simons theory [9, 10] that couples electrodynamics to the topological charge

induced by external sources. The corresponding term in the Lagrangian is [8–10]

LA = �cA
4
✓Fµ⌫F̃

µ⌫ , (1)

where cA is the chiral anomaly coe�cient of QED [11, 12] and the dimensionless pseudoscalar field

✓ describes the topological charge. In many systems ✓ is believed to be a slowly varying function

of coordinates and time [4]. This is the approximation also assumed in this work. In particular, we

treat the first derivative @✓ as constant and adopt a fairly standard notation of the constant vector

bµ = (b0,�b) = cA@µ✓ = cA(✓̇,�r✓); b0 is also known as the chiral conductivity �� [13, 14]. The

photon propagator in chiral matter reads [8, 15]

Dµ⌫(q) = �i
q2gµ⌫ + i✏µ⌫⇢�b⇢q� + bµb⌫

q4 + b2q2 � (b · q)2 . (2)

Since we are interested in the static limit, it is convenient to introduce a notation Dµ⌫(q) =

limq0!0Dµ⌫(q) and the corresponding expression in the configuration space Dµ⌫(x). Throughout

the paper the bold face font distinguishes the three-dimensional vectors. The potential induced by

a stationary current J⌫(x) can be computed as

Aµ(x) = �i

Z
d3x0Dµ⌫(x� x0)J⌫(x

0) = �i

Z
d3q

(2⇡)3
eiq·xDµ⌫(q)J⌫(q) . (3)

In the forthcoming sections we consider electron scattering o↵ potential Aµ at the leading order

of the perturbation theory. Following [16] it is instructive to consider two di↵erent types of chiral

matter: (i) homogenous matter with b0 6= 0, b = 0 and (ii) stationary matter with b0 = 0, b 6= 0.

The paper is organized accordingly: Sec. II deals with the homogeneous chiral matter in which

case the scattering cross section (14) is found to have a resonance at momentum transfer q2 = �b20.

It appears due to the periodic variation of the vector potential with the wavenumber b0[16, 17] and

is intimately related to the chiral instability of the electromagnetic field [8]. Therefore, at T � b0

the transport cross section �T is enhanced as can be seen in (17). As a consequence, the mean free

path, which in a dilute gas of density n can be estimated as ` ⇠ 1/n�T , is shorter than at b0 = 0

by a factor of ⇠ M2/T 2. This implies suppression of transport coe�cients at high temperatures

and, in particular, of the ratio of the shear viscosity to the entropy density is ⌘/s ⇠ T ` hvi, which

may be a reason for the smallness of this ratio in Quark Gluon Plasma [18]. Indeed, the gluon

propagator has exactly same form as (2) apart from the color factor.

The stationary chiral matter is discussed in Sec. III and the corresponding scattering and

transport cross sections given by (23) and (25b) reflect the axial symmetry with respect of the
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Static limit q0=0 (                           )  

3

vector b. In Sec. IV the e↵ect of the new terms in the transport cross section is illustrated by

computing the electrical conductivity using the classical transport theory. In homogeneous matter

the result is displayed in Fig. 3 which shows suppression of the conductivity at T � b0. In

stationary matter the applied external electric field induces electric current along its direction and

in the direction of b with the corresponding conductivities � and �0. Their temperature dependence

is shown in Fig. 4. The discussion and conclusions are presented in Sec. V.

II. HOMOGENOUS MATTER

A. Potential

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read

in the static limit [16]

D00(q) =
i

q2
, (4a)

D0i(q) = D0i(q) = 0 , (4b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
+
✏ijkqk

b0q2
. (4c)

The current density of the static point source (the “ion”) of charge e0 is J⌫(x) = e0�⌫0�(x). It

induces the Coulomb potential

A0(q) = e0/q2 , A(q) = 0 (5)

implying that the scattering cross section o↵ the point charge is given by the Rutherford formula

and is not a↵ected by the anomaly (in the static limit).

A non-trivial contribution comes about if the “ion” is in a state  with a finite expectation value

of the magnetic moment µ. Indeed, the spin current associated with such a state is r⇥ ⇤µ . In

the point particle limit the spin current can be written as J(x) = r⇥ (µ�(x)). It represents the

first non-vanishing multipole moment of the vector potential. Altogether the electrical current of

ion is

J0(x) = e0�(x) , J(x) = r⇥ (µ�(x)) , (6)

which in momentum space reads

J0(q) = e0 , J(q) = iq ⇥ µ . (7)

(a) (b)

(c) (d)

FIG. 1. The topology of Abelian magnetic flux: (a) upper left – untwisted loop; (b) upper right –

twisted magnetic flux; (c) lower left – the self-linked magnetic flux (trefoil knot shown); (d) lower

right – the self-linked Chandrasekhar-Kendall state.

minimize the total magnetic energy

EM ⌘ 1

2

Z
d3x B2 (2.6)

at a given magnetic helicity (1.1). We thus expect that the CME currents will lead to the

transition from Hopfion states to CK states at late times, once the Ohmic currents have

dissipated. We will see below that explicit computations indeed yield this result.

6

5

|q| = 2|p| sin #
2 . To be sure, the electron wave function also gets anomalous contributions, however

those external leg contributions are irrelevant for the scattering problem.

The static limit which is used in derivation of (12) requires that the energy transfer be negligible

compared to (i) the momentum transfer, i.e. q0 ⌧ |q| and (ii) the anomaly parameter, i.e. q0 ⌧ b0

as can be seen by examining the denominator of (2). Using q0 = q2/2M the first condition implies

that |q| ⌧ M , while the second condition imposes a stronger constraint |q| ⌧
p
b0M (since

b0 ⌧ M). In the static limit the interaction time 1/q0 is much longer than the time 1/b0 it takes

the chiral instability to develop.

Substituting the vector potential from(8b) and the scalar potential from (5) into (12) yields

d�

d⌦0 =
e2

4⇡2

(
e0E

q2
+

b0(µ · q p · q � p · µq2)

(q2 � b20)q
2

�2
+

[µ · (p⇥ p0)]2

(q2 � b20)
2

� q2

4


e02

q4
� (µ⇥ q)2

(q2 � b20)
2

✓
1 +

b20
q2

◆�)
.

(13)

Since the magnetic moments are usually randomly oriented, Eq. (13) needs to be averaged over its

directions. Using hµiµji = µ2�ij/3 one finds

⌧
d�

d⌦0

�
=

e2

8⇡2

⇢
2E2e02

q4

✓
1� q2

4E2

◆
+

2µ2

3(q2 � b20)
2

✓
1 +

b20
q2

◆
(p⇥ q)2 +

q4

2

��
. (14)

The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =

1

2p2

Z
q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2

0

⇢
2E2e02

q2

✓
1� q2

4E2

◆
+

2µ2

3

q2

(q2 � b20)
2 + �4

✓
1 +

b20
q2

◆✓
p2q2 +

q4

4

◆�
dq2

(16)

where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.
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The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =
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2p2
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q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2
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2E2e02

q2
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1� q2

4E2
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b20
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where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.
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vector b. In Sec. IV the e↵ect of the new terms in the transport cross section is illustrated by

computing the electrical conductivity using the classical transport theory. In homogeneous matter

the result is displayed in Fig. 3 which shows suppression of the conductivity at T � b0. In

stationary matter the applied external electric field induces electric current along its direction and

in the direction of b with the corresponding conductivities � and �0. Their temperature dependence

is shown in Fig. 4. The discussion and conclusions are presented in Sec. V.

II. HOMOGENOUS MATTER

A. Potential

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read

in the static limit [16]

D00(q) =
i

q2
, (4a)

D0i(q) = D0i(q) = 0 , (4b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
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✏ijkqk

b0q2
. (4c)

The current density of the static point source (the “ion”) of charge e0 is J⌫(x) = e0�⌫0�(x). It

induces the Coulomb potential

A0(q) = e0/q2 , A(q) = 0 (5)

implying that the scattering cross section o↵ the point charge is given by the Rutherford formula
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4

According to (3) and (4) it produces the potential
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�
, (8b)

while the time component is still given by the first equation of (5). Transformation to the config-

uration space is accomplished using the integral

Z
eiq·x

|q|2 � b20 � i0
d3q =

2⇡2

|x| e
i|x|b0 . (9)

The potential, or, more precisely, the zero-frequency component of the vector potential, in the

configuration space reads

A(x) =
µ⇥ x

4⇡|x|3 (1� ib0|x|) eib0|x| �
µ
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⇣
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i
. (10)

In the anomaly-free limit b0 ! 0 (10) reduces to the classical result
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1

4⇡

Z r0 ⇥ (µ�(x0))

|x� x0| d3x0 , bµ = 0 . (11)

Since µ ⇠ e/M , the magnetic contribution (10) is a relativistic correction to the Coulomb potential.

The oscillatory behavior of the potential (10) stems from the non-dissipative nature of the

anomalous current [19]. Its imaginary part indicates the radiative instability with respect to the

pair-production [20]. An important feature of the photon propagator in chiral matter (2) is the

emergence of the unstable modes that produce the chiral instability of the electromagnetic field.

This instability originates in the momentum interval |q| < b0 and appears as the pole in the upper-

half of the complex q0-plane [8, 17]. In the static limit q0 ! 0 there is a single mode |q| = b0 that

causes the chiral instability and it appears as the singularity in (8b).

B. Cross sections

The scattering cross section of “electron” of charge e o↵ an “ion” of charge e0 reads
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⇤
, (12)

where p = (E,p) and p0 = (E,p0) are particle momentum before and after scattering and q =

p0 � p is the momentum transfer. In terms of the scattering angle # the momentum transfer is
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Produces the potentials
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A0(q) = e0/q2

5

|q| = 2|p| sin #
2 . To be sure, the electron wave function also gets anomalous contributions, however

those external leg contributions are irrelevant for the scattering problem.

The static limit which is used in derivation of (12) requires that the energy transfer be negligible

compared to (i) the momentum transfer, i.e. q0 ⌧ |q| and (ii) the anomaly parameter, i.e. q0 ⌧ b0

as can be seen by examining the denominator of (2). Using q0 = q2/2M the first condition implies

that |q| ⌧ M , while the second condition imposes a stronger constraint |q| ⌧
p
b0M (since

b0 ⌧ M). In the static limit the interaction time 1/q0 is much longer than the time 1/b0 it takes

the chiral instability to develop.

Substituting the vector potential from(8b) and the scalar potential from (5) into (12) yields

d�

d⌦0 =
e2

4⇡2

(
e0E

q2
+

b0(µ · q p · q � p · µq2)

(q2 � b20)q
2

�2
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[µ · (p⇥ p0)]2
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2

� q2

4


e02

q4
� (µ⇥ q)2
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2

✓
1 +

b20
q2

◆�)
.

(13)

Since the magnetic moments are usually randomly oriented, Eq. (13) needs to be averaged over its

directions. Using hµiµji = µ2�ij/3 one finds

⌧
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�
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e2

8⇡2

⇢
2E2e02

q4

✓
1� q2

4E2

◆
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2µ2

3(q2 � b20)
2

✓
1 +

b20
q2

◆
(p⇥ q)2 +

q4

2

��
. (14)

The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =

1

2p2

Z
q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2

0

⇢
2E2e02

q2

✓
1� q2

4E2

◆
+

2µ2

3

q2

(q2 � b20)
2 + �4

✓
1 +

b20
q2

◆✓
p2q2 +

q4

4

◆�
dq2

(16)

where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.

Coulomb Anomaly

Cross section averaged over the magnetic moment directions:
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SPIN AVERAGE CROSS-SECTION

Transport cross section
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Integration in (16) yields

�T =
e2

16⇡p4

✓
4E2e02L+

2µ2

3
4p4I

◆
, (17)

where L stands for the Landau logarithm (the first, Coulomb term, in (16) is computed with the

logarithmic accuracy) and we defined

I = 1 +
1
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with

a =
b20
4p2

, ✏ =
�2

4p2
. (19)

This function is displayed in Fig. 1. At large momenta (18) can be expanded at small a while

keeping the ratio a/✏ fixed. With the logarithmic accuracy this gives I ⇡ ln a�1. If |p| � M , then

the anomalous term dominates and the transport cross section which reads⇤

�T ⇡ e2µ2

6⇡
ln

4p2

b20
, |p| � b0 ,� . (20)

In the opposite limit |p| ⌧ b0,�, I ⇡ 6p2b20/(b
4
0 + �4) so that the Coulomb term dominates the

transport cross section. It is noteworthy that the transport cross section is only logarithmically

sensitive to the chiral conductivity b0 and does not depend on the external parameter � in two

asymptotic regimes. The transition between these regimes at moderate momenta is the most

sensitive to their values.

FIG. 1. Function I(a) at ✏ = 0.03.

⇤ A more precise expression is obtained by keeping sub-logarithmic corrections in (18) which is accounted for by

replacing in (20) ln(4p2/b20) ! ln(4p2/b20) + 1 + ⇡y + 2y arctan y � (1/2) ln(1 + 1/y2) with y = b20/�
2.
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At large momenta

Γ is width
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The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.
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where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.

due to processes that 
tame the instability
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⇤ A more precise expression is obtained by keeping sub-logarithmic corrections in (18) which is accounted for by

replacing in (20) ln(4p2/b20) ! ln(4p2/b20) + 1 + ⇡y + 2y arctan y � (1/2) ln(1 + 1/y2) with y = b20/�
2.

Large 

Coulomb Anomaly

⇒ anomaly dominates Coulomb
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ANOMALOUS CONTRIBUTION TO CONDUCTIVITY

Electrical 
conductivity

9

e = e0 and n = n0 for notational simplicity. We proceed by computing the current (26) in two

limiting cases.

A. Homogeneous matter

Electrical conductivity at b = 0 can be computed using the standard formula

� =
e2

3T

Z
f0

1

n�T
d3p , (27)

where the transport cross section is given by (17). As explained there, at low energies/temperatures

the Coulomb term dominates the transport cross section so that one recovers the textbook result

� = 16⇡T/e2L, where L = ln(T/mD). At high temperatures one obtains using (20)

� =
⇡

µ2T ln(T/b0)
, T � b0, � . (28)

Remarkably, this formula does not depend on the resonance width � (which is essentially a cuto↵)

and only weakly depends on b0. It shows that the electrical conductivity of homogenous chiral

matter with b0 6= 0 is suppressed at high temperatures by a factor of e2/8µ2T 2 ⇠ M2/2T 2, where

M is the ion mass. This is exhibited in Fig. 3, neglecting the temperature dependance of the Landau

logarithm. The suppression happens because of the resonance in the scattering cross section at

the scattering angle # = b0/|p|, which in turn can be traced back to the oscillatory behavior of the

potential as explained in Sec. II.

FIG. 3. Electrical conductivity (27) at � = 0.1b0, M = 5b0 and L = 5 (solid line). Dashed line: the

Coulomb limit, dotted line: the anomalous contribution (28) with the correction mentioned in footnote ⇤.

In relativistic heavy-ion collisions b0 is conjectured to be on the order of 1–10 MeV [4].
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matter with b0 6= 0 is suppressed at high temperatures by a factor of e2/8µ2T 2 ⇠ M2/2T 2, where

M is the ion mass. This is exhibited in Fig. 3, neglecting the temperature dependance of the Landau

logarithm. The suppression happens because of the resonance in the scattering cross section at

the scattering angle # = b0/|p|, which in turn can be traced back to the oscillatory behavior of the

potential as explained in Sec. II.

FIG. 3. Electrical conductivity (27) at � = 0.1b0, M = 5b0 and L = 5 (solid line). Dashed line: the

Coulomb limit, dotted line: the anomalous contribution (28) with the correction mentioned in footnote ⇤.

In relativistic heavy-ion collisions b0 is conjectured to be on the order of 1–10 MeV [4].

(anomaly contribution to f0 is 
neglected for simplicity)
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SUMMARY

• Great opportunity for ambitious experimentalists.

• Radiation by a fast particle is a powerful 
tool to study the properties of chiral 
media such as the quark-gluon plasma, 
Weyl semimetals, axion dark matter, 
primordial magnetic fields etc.
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