QUANTUM TOMOGRAPHY OF CHIRAL MEDIA

Kirill Tuchin

Iowa State University

OF SCIENCEAND TECHNOLOGY

"Chirality, Vorticity and Magnetic field in Heavy-lon Collisions" @ SUNY Stony Brook
November 5, 2021

CHIRAL MEDIA

Nuclear Matter

\mathcal{P}-odd fluctuations and long range order in heavy ion collisions. Deformed QCD as a toy model

Ariel R. Zhitnitsky

PHYSICAL REVIEW D 68, 114505 (2003)
Low-dimensional long-range topological charge structure in the QCD vacuum
I. Horváth, ${ }^{1}$ S. J. Dong, ${ }^{1}$ T. Draper, ${ }^{1}$ F. X. Lee,,${ }^{2,3}$ K. F. Liu, ${ }^{1}$ N. Mathur, ${ }^{1}$ H. B. Thacker, ${ }^{4}$ and J. B. Zhang ${ }^{5}$

CHIRAL MEDIA

Dirac and Weyl semimetals

Chiral magnetic effect in ZrTe_{5}

Qiang Li ${ }^{1 \star}$, Dmitri E. Kharzeev ${ }^{2,3 \star}$, Cheng Zhang ${ }^{1}$, Yuan Huang ${ }^{4}$, I. Pletikosić ${ }^{1,5}$, A. V. Fedorov ${ }^{6}$, R. D. Zhong ${ }^{1}$, J. A. Schneeloch ${ }^{1}$, G. D. Gu ${ }^{1}$ and T. Valla ${ }^{1 \star}$
arXiv:1412.6543 [cond-mat.str-el]

CHIRAL MEDIA

Axionic stars/clumps, dark matter

PHYSICAL REVIEW D 92, 103513 (2015)

Do dark matter axions form a condensate with long-range correlation?

Alan H. Guth, ${ }^{1, *}$ Mark P. Hertzberg, ${ }^{1,2, \dagger}$ and C. Prescod-Weinstein ${ }^{3, \ddagger}$
${ }^{1}$ Center for Theoretical Physics \& Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
${ }^{2}$ Institute of Cosmology \& Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
${ }^{3}$ Center for Theoretical Physics, MIT Kavli Institute for Astrophysics and Space Research \& Department of
Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 14 July 2015; published 16 November 2015)

PROBING THE MATTER: CHERENKOV AND TRANSITION RADIATION

Classical Cherenkov radiation is emitted by a charged particle that moves faster than the phase velocity of light: $v n>1$

$$
\cos \theta=\frac{1}{\beta \sqrt{\epsilon}}=\frac{1}{\beta n}
$$

Classical transition radiation is emitted by a charged particle that moves through inhomogeneous matter.

33. Passage of particles through matter 33

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of

PHYSICAL REVIEW LETTERS 121, 182301 (2018)

Transition Radiation as a Probe of the Chiral Anomaly

Xu-Guang Huang ${ }^{1,2}$ and Kirill Tuchin ${ }^{3}$

${ }^{1}$ Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433, China
${ }^{2}$ Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
${ }^{3}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

Figure 33.27: X-ray photon energy spectra for a radiator consisting of $20025 \mu \mathrm{~m}$ thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single surface (dashed line). Curves are shown with and without absorption. Adapted from Ref. 88

FERMI'S MODEL OF COLLISIONAL ENERGY LOSS

The energy loss rate = flux of the Poynting vector out of cylinder of radius a coaxial with the particle path:

$$
-\frac{d \varepsilon}{d z}=2 \pi a \int_{-\infty}^{\infty}\left(E_{\phi} B_{z}-E_{z} B_{\phi}\right) d t=2 a \operatorname{Re} \int_{0}^{\infty}\left(E_{\phi \omega} B_{z \omega}^{*}-E_{z \omega} B_{\phi \omega}^{*}\right) d \omega
$$

Maxwell equations $\boldsymbol{\nabla} \times \boldsymbol{B}_{\omega}=-i \omega \boldsymbol{D}_{\omega}+j_{\omega}$ etc.

$$
\epsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+i \omega \Gamma}
$$

Energy loss: $a \rightarrow 0$

$$
\text { UR limit: } \quad-\frac{d \varepsilon}{d z}=\frac{q^{2}}{4 \pi v^{2}} \omega_{p}^{2} \ln \frac{v}{a \omega_{p}}
$$

(small) Cherenkov radiation contribution emerges at $a \rightarrow \infty$ if $v>1 / \sqrt{\epsilon(0)}$.

QED IN CHIRAL MEDIUM: MAXWELL-CHERN-SIMONS

Sikivie (84), Wilczek (87), Carroll et al (90)

$$
\mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}
$$

$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
Anomalous Hall Effect
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$,
Kharzeev, McLerran, Warringa (2008)

Fukushima, Kharzeev, Warringa (2008)

Let the field θ be homogenous and weekly time-dependent $\dot{\theta}=$ const

EM FIELDS OF A CHARGE IN CHIRAL MEDIUM

EM field of a point charge

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{D}+\sigma_{\chi} \boldsymbol{B}+q v \hat{\boldsymbol{z}} \delta(z-v t) \delta(\boldsymbol{b}), \\
& \boldsymbol{\nabla} \cdot \boldsymbol{D}=q \delta(z-v t) \delta(\boldsymbol{b}), \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0,
\end{aligned}
$$

Can be solved for constant chiral conductivity, e.g.

$$
\begin{aligned}
& B_{\phi \omega}(\boldsymbol{r})=\frac{q}{2 \pi} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu+1} k_{\nu}\left(k_{\nu}^{2}-s^{2}\right) K_{1}\left(b k_{\nu}\right) \\
& B_{b \omega}(\boldsymbol{r})=\sigma_{\chi} \frac{q}{2 \pi} \frac{i \omega}{v} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu} k_{\nu} K_{1}\left(b k_{\nu}\right)
\end{aligned}
$$

High energy approximation:

$$
B_{\phi}=\frac{e b}{8 \pi x_{-}^{2}} e^{-\frac{b^{2} \sigma}{4 x_{-}}}\left[\sigma \cos \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)+\sigma_{\chi} \sin \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)\right]
$$

EM FIELDS OF A CHARGE IN CHIRAL MEDIUM

FIG. 2: Magnetic field of a point charge as a function of time t at $z=0$. (Free space contribution is not shown). Electrical conductivity $\sigma=5.8 \mathrm{MeV}$. Solid line on both panels corresponds to $B=B_{\phi}$ at $\sigma_{\chi}=0$. Broken lines correspond to B_{ϕ} (dashed), B_{r} (dashed-dotted) and B_{z} (dotted) with $\sigma_{\chi}=15 \mathrm{MeV}$ on the left panel and $\sigma_{\chi}=1.5 \mathrm{MeV}$ on the right panel. Note that the vertical scale on the two panels is different.

FERMI'S MODEL WITH ANOMALOUS CURRENT

$$
-\frac{d \varepsilon}{d z}=2 \pi a \int_{-\infty}^{\infty}\left(E_{\phi} B_{z}-E_{z} B_{\phi}\right) d t=2 a \operatorname{Re} \int_{0}^{\infty}\left(E_{\phi \omega} B_{z \omega}^{*}-E_{z \omega} B_{\phi \omega}^{*}\right) d \omega
$$

For simplicity consider $\omega_{0}=0$
UR limit $\gamma \gg 1$ at $a \rightarrow 0$ gives energy loss

$$
-\frac{d \varepsilon}{d z}=\frac{q^{2}}{4 \pi v^{2}}\left(\omega_{p}^{2} \ln \frac{v}{a \omega_{p}}+\frac{1}{4} \gamma^{2} \sigma_{\chi}^{2}\right) \quad \text { increases as (energy) }{ }^{2} \text { due to anomaly }
$$

Chiral Cherenkov radiation emerges at $a \rightarrow \infty$ even if $\epsilon=1$

$$
\frac{d W}{d \omega}=-\left.\frac{d \varepsilon}{d z \omega d \omega}\right|_{a \rightarrow \infty}=\frac{q^{2}}{4 \pi}\left\{\frac{1}{2}\left(1-\frac{1}{v^{2}}\right)+\frac{\sigma_{\chi}}{2 \omega}+\frac{\left(1+v^{2}\right) \sigma_{\chi}^{2}}{8 v^{2} \omega^{2}}+\ldots\right\}, \quad \omega<\sigma_{\chi} \gamma^{2}
$$

Power of chiral Cherenkov radiation $P=\frac{q^{2}}{4 \pi} \frac{\sigma_{\chi}^{2} \gamma^{2}}{4}$

QFT CALCULATION: $1 \rightarrow 2$ PROCESSES

In radiation gauge: $\quad \nabla^{2} \boldsymbol{A}=\partial_{t}^{2} \boldsymbol{A}-\sigma_{\chi} \boldsymbol{\nabla} \times \boldsymbol{A}$
The dispersion relation $k^{2}=-\lambda \sigma_{\chi}|\boldsymbol{k}| \quad \rightarrow$ photon becomes space- or timelike $\lambda=$ helicity

$k^{2}=\left(p \pm p^{\prime}\right)^{2}=2 m(m \pm \varepsilon) \quad$ forbidden in vacuum, but allowed in chiral medium
Pair production: $k^{2}>0 \Rightarrow \lambda \sigma_{\chi}<0$
Photon radiation: $k^{2}<0 \Rightarrow \lambda \sigma_{\chi}>0$
UR approx.: $\boldsymbol{A}=\frac{1}{\sqrt{2 \omega V}} \epsilon_{\lambda} e^{i \omega z+i k_{\perp} \cdot \boldsymbol{x}_{\perp}-i \omega t} \exp \{-i \frac{1}{2 \omega} \int_{0}^{z}[k_{\perp}^{2}-\underbrace{\left.\sigma_{\chi}\left(z^{\prime}\right) \omega \lambda\right]}_{" \sim_{\gamma}^{2} \text { " }} d z^{\prime}\}$

QUANTUM CHERENKOV RADIATION

$$
\begin{gathered}
\mathcal{M}=-e Q \bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p) \epsilon_{\mu}^{*} \times 4 \pi \varepsilon x(1-x) \delta\left(q_{\perp}^{2}+\kappa_{\lambda}\right) \\
x=\frac{\omega}{\varepsilon} \quad \kappa_{\lambda}(z)=x^{2} m^{2}-(1-x) x \lambda \sigma_{\chi} \varepsilon \quad \text { can become negative! }
\end{gathered}
$$

Chiral Cherenkov effect: photon radiation at $\vartheta \sim \sqrt{\left|\sigma_{\chi}\right| / \omega}$

Kappa is negative if $\lambda \sigma_{\chi}>0 \quad$ and $\quad x<x_{0}=\frac{1}{1+m^{2} /\left(\lambda \sigma_{\chi} \varepsilon\right)}$
Photon
radiation

$$
\frac{d W_{+}}{d x}=\frac{\alpha Q^{2}}{2 \varepsilon x}\left\{\sigma_{\chi} \varepsilon\left(\frac{x^{2}}{2}-x+1\right)-m^{2} x\right\} \theta\left(x_{0}-x\right)
$$

Vanishes as $\hbar \rightarrow 0$
rate

$$
\frac{d W_{-}}{d x}=0
$$

Quantum anomaly!

Total rate of energy loss $\quad-\frac{d \varepsilon}{d z}=\int_{0}^{1} \frac{d W_{+}}{d x} x \varepsilon d x=\frac{1}{3} \alpha Q^{2} \sigma_{\chi} \varepsilon$
Thus the recoil reduces $\gamma^{2} \rightarrow \gamma$

TRANSITION RADIATION

(Transition radiation in ordinary materials corresponds to $\kappa_{\mathrm{tr}}=m^{2} x^{2}+m_{\gamma}^{2}(1-x)$ finite at $\hbar \rightarrow 0$)
Contribution of the pole at $q_{\perp}^{2}+\kappa_{\lambda}=0$ is the chiral Cherenkov radiation.
The rest is the "chiral transition radiation"

CHERENKOV + TRANSITION RADIATION IN QGP

- Charged particles traveling through the chiral medium emit electromagnetic radiation sensitive to the chiral anomaly.
- It is circularly polarized and has resonant peaks at angles proportional to the anomaly

APPLICATIONS: WEYL SEMIMETAL

FIG. 2. Collisional energy loss spectrum of electron with $\gamma=100$ in a semimetal with parameters $\omega_{p}=$

$$
\text { Very small recoil } \omega_{M} \lesssim \sigma_{\chi} \gamma^{2} \ll \varepsilon
$$

Neglecting coherence effects: $\quad \frac{\Delta \varepsilon^{\chi C}}{\Delta \varepsilon^{B H}} \sim \frac{\sigma_{\chi}}{e^{2} T} \sim \frac{\mu_{5}}{T} \quad \gg 1$ in a TaAs at room temp.

APPLICATIONS:QGP

FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with $\gamma=20$ in Quark-Gluon Plasma. Plasma parameters: $\omega_{p}=0.16 T, \Gamma=1.11 T$ [36], $m=T=250 \mathrm{MeV}$. Solid line: $\sigma_{\chi}=10 \mathrm{MeV}$, dashed line: $\sigma_{\chi}=7 \mathrm{MeV}$, dotted line: $\sigma_{\chi}=0 . \omega_{ \pm}$are defined in (13).

The same qualitative picture in QCD (after $\mathrm{e} \rightarrow \mathrm{g}$, including color factors etc.)

$$
-\left.\frac{d \varepsilon}{d z}\right|_{\mathrm{anom}}=\frac{g^{2} C_{F}}{4 \pi} \frac{\tilde{\sigma}_{\chi} \varepsilon}{3}
$$

CHIRAL CONTRIBUTIONS TO BETHE-HEITLER

Work in progress with J. Hansen.
chiral
Cherenkov

Resonance
$-\boldsymbol{q}^{2}=\sigma_{\chi}^{2}$

CONTRIBUTION OF ANOMALY TO TRANSPORT

elastic scattering on a heavy "ion"

$$
\begin{aligned}
D_{00}(\boldsymbol{q}) & =\frac{i}{\boldsymbol{q}^{2}} \\
D_{0 i}(\boldsymbol{q}) & =D_{0 i}(\boldsymbol{q})=0 \\
D_{i j}(\boldsymbol{q}) & =-\frac{i \delta_{i j}}{\boldsymbol{q}^{2}-b_{0}^{2}}-\frac{\epsilon_{i j k} q^{k}}{b_{0}\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)}+\frac{\epsilon_{i j k} q^{k}}{b_{0} \boldsymbol{q}^{2}}
\end{aligned}
$$

Static limit $q_{0}=0\left(q^{0} \ll|\boldsymbol{q}| q^{0} \ll b_{0}\right)$

Current of an ion with charge e 'and magnetic moment μ :

$$
J^{0}(\boldsymbol{x})=e^{\prime} \delta(\boldsymbol{x}), \quad \boldsymbol{J}(\boldsymbol{x})=\boldsymbol{\nabla} \times(\boldsymbol{\mu} \delta(\boldsymbol{x}))
$$

Produces the potentials $\quad A^{0}(\boldsymbol{q})=e^{\prime} / \boldsymbol{q}^{2} \quad A^{\ell}(\boldsymbol{q})=-\frac{1}{\boldsymbol{q}^{2}-b_{0}^{2}}\left[i(\boldsymbol{\mu} \times \boldsymbol{q})^{\ell}+\frac{b_{0}}{\boldsymbol{q}^{2}}\left(\boldsymbol{\mu} \cdot \boldsymbol{q} q^{\ell}-\boldsymbol{q}^{2} \mu^{\ell}\right)\right]$
Cross section averaged over the magnetic moment directions:

$$
\begin{gathered}
\left\langle\frac{d \sigma}{d \Omega^{\prime}}\right\rangle=\frac{e^{2}}{8 \pi^{2}}\left\{\frac{2 E^{2} e^{\prime 2}}{\boldsymbol{q}^{4}}\left(1-\frac{\boldsymbol{q}^{2}}{4 E^{2}}\right)+\frac{2 \mu^{2}}{3\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)^{2}}\left(1+\frac{b_{0}^{2}}{\boldsymbol{q}^{2}}\right)\left[(\boldsymbol{p} \times \boldsymbol{q})^{2}+\frac{\boldsymbol{q}^{4}}{2}\right]\right\} \\
\text { Coulomb }
\end{gathered} \text { Anomaly }
$$

SPIN AVERAGE CROSS-SECTION

Transport cross section $\quad \sigma_{T}=\frac{e^{2}}{16 \pi \boldsymbol{p}^{4}}\left(\begin{array}{l}\left.4 E^{2} e^{\prime 2} L+\frac{2 \mu^{2}}{3} 4 \boldsymbol{p}^{4} \mathcal{I}\right) \\ \text { Coulomb Anomaly }\end{array}\right.$

$$
\begin{aligned}
\mathcal{I}=1+\frac{1}{\epsilon}\left[2 a(1+a)-\epsilon^{2}\right]\left(\arctan \frac{1-a}{\epsilon}+\arctan \frac{a}{\epsilon}\right)+ & \frac{1}{2}(1+3 a) \ln \left(1+\frac{1-2 a}{a^{2}+\epsilon^{2}}\right) \\
a=\frac{b_{0}^{2}}{4 \boldsymbol{p}^{2}}, \quad \epsilon=\frac{\Gamma^{2}}{4 \boldsymbol{p}^{2}} \quad & \\
& \\
& \text { due is width } \frac{\boldsymbol{q}^{2}}{\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)^{2}+\Gamma^{4}} \\
& \text { tame the instability }
\end{aligned}
$$

At large momenta $\quad \sigma_{T} \approx \frac{e^{2} \mu^{2}}{6 \pi} \ln \frac{4 \boldsymbol{p}^{2}}{b_{0}^{2}} \Rightarrow$ anomaly dominates Coulomb

Large $\sigma_{T} \Rightarrow$ small m.f.p. \Rightarrow suppression of transport coefficients

ANOMALOUS CONTRIBUTION TO CONDUCTIVITY

$\begin{aligned} & \text { Electrical } \\ & \text { conductivity } \\ & \\ & \text { E }\end{aligned}=\frac{e^{2}}{3 T} \int f_{0} \frac{1}{n \sigma_{T}} d^{3} p$
(anomaly contribution to f_{0} is neglected for simplicity)

SUMMARY

- Radiation by a fast particle is a powerful tool to study the properties of chiral media such as the quark-gluon plasma, Weyl semimetals, axion dark matter, primordial magnetic fields etc.

- Great opportunity for ambitious experimentalists.
0_{0}^{0} - 0 .
\because
0
0

$0 \cdot 49 \cdot 0^{\circ} 3$

3.

0
$\because 0 \quad 0 \quad 0$
3.
©
(1)

(x) $+\cos ^{2} 38$.

3

(2) ${ }^{\circ}$
$0{ }^{-2}$蹅
$3 \cdot 0^{3}$

9
$0 \cdot 0^{3}$
${ }_{0}^{0}$
es o
\because

0

$$
6
$$

都

1

