Study of nuclear effects in small collision systems connecting proton-proton and heavy-ion collisions

Sanghoon Lim Pusan National University

Nuclear Physics Seminar @ BNL Jan-14-2020

Relativistic heavy-ion collisions

Inside the QGP

Heavy quark production in heavy-ion collisions

Heavy quark production in heavy-ion collisions

- Electrons from heavy-flavor decays in Au+Au collisions at 200 GeV
 - Strong suppression in high p_T
 - Significant v_2

Heavy quark production in heavy-ion collisions

- Similar results at the LHC
- Several models can reproduce both R_{AA} and v_2 simultaneously

Control experiment

7

What's happened in p+A collisions ?

Initial geometry

Versatility of RHIC

RHIC energies, species combinations and luminosities (Run-1 to 17)

Cold Nuclear Matter effects Gluon saturation

- Gluons density increases with decreasing x
 - Gluon density should be finite
 - Gluons can interact with each other
- At a certain scale called saturation scale, Q_s(x), gluon density may not increase any more

Cold Nuclear Matter effects Shadowing w/ pQCD

- In case of particle production at forward rapidity where parton's x inside the nucles is small, interactions with the partons inside the nucleus happen coherently.
 - Resumming the coherent multiple scattering is equivalent to a shift of the momentum fraction of the active parton from the nucleus \rightarrow Lead to a net suppression of

the cross section

 P_c

 $\frac{P_c}{Z_1}$

 q^{μ}

 $x_p P_p$

(b)

Cold Nuclear Matter effects Modification of nPDFs (Parameterization)

- Parameterization of nPDFs
 - Modification depends on x and Q^2
 - The most recent nPDF set (EPPS16) starts to include LHC results
 Still large uncertainty particularly on gluon distribution
 - Can be used to pQCD calculation for pA collisions
 - Possible to be affected by some other CNM effects

Cold Nuclear Matter effects Initial-state energy loss & Breakup of Quarkonia

- Initial-state energy loss
 - Partons can loose their energy before hard scattering
- Breakup of Quarkonia states
 - Quarkonia can be broken by interacting with co-moving particles
 - Breakup cross section can be varied with binding energy

A hint of Quark-Gluon-Plasma

- Observed significant amount of v_2 in various small collision systems
 - QGP in small systems?
 - Other origins of the anisotropy?

Phys. Lett. B 765 193 (2017)

22

Experimental results in small systems

Heavy quark production in d+Au collisions

Heavy quark production in d+Au collisions

 nPDF only can not describe the rapiditydependent modification

Heavy quark production in d+Au collisions

- Fail to reproduce the data at both rapidity simultaneously w/ combinations of initialstate effects
 - modification of nPDF
 - initial k_T broadening

Comparison with J/ ψ

- In 0-20% central d+Au collisions
 - R_{dA} of HF muon and J/ ψ are similar at forward rapidity
 - charm production is enhanced but
 J/ψ production is significantly
 suppressed at mid- and backward rapidity
 - Larger break-up in range of higher multiplicity (A-going)

System size dependence?

Clear A-dependence at forward rapidity
 Different shadowing/energy loss

System size dependence?

- Clear A-dependence at forward rapidity
 Different shadowing/energy loss
- A-dependence at backward rapidity as well
 Larger nuclear absorption effect in Au than AI (relevant at RHIC energy)

Charged hadrons in p+A

pQCD calculation: Phys. Lett. B 740, 23 (2015)

- In charged hadron production, very similar modification as the ϕ results
 - Modification based on nPDF sets can describe the forward results but underestimate the enhancement at backward
- In p+AI collisions, a clear A-dependence only at backward (A-going direction)
 - pQCD calculation considering incoherent multiple scattering can describe the difference between p+Au and p+Al collsions

A-dependent modification

pQCD calculation: Phys. Lett. B 740, 23 (2015)

- At backward rapidity (A-going direction)
 - R_{pA} in p+Au and p+Al follows the same trend of increasing with $< N_{part} >$
 - Dominated by final-state effects (multiplicity)?
- At forward rapidity (p-going direction)
 - R_{pA} in p+Au and p+Al show their own trend of decreasing with $\langle N_{part} \rangle$
 - Dominated by initial-state effects (impact parameter)?

Comparison with heavy-flavor

Phys. Rev. Lett. 112, 252301 (2014)

- Similar modification in charged hadrons and heavy-flavor muons (dominated by charm)
- Common nuclear effects for light and charm in small collision systems?

CNM effects in A_N?

Phys. Rev. Lett. 123, 122001 (2019)

Clear A-dependence of A_N
 → Related to A-dependent p_T broadening?

 $A_N = \frac{\sigma_L}{\sigma_L}$

Heavy-flavor v₂ in small systems

 Non-zero v₂ of muons from heavy-flavor decays (mostly charm) at forward and backward in d+Au collisions

Heavy-flavor v₂ in small systems

- Non-zero v2 of muons from heavy-flavor decays (mostly charm) at forward and backward in d+Au collisions
- Similar results at the LHC
- These results can not be reproduced by models used for heavy-ion collisions

Can we turn off the flow?

Charm and bottom v_2 in p+p

p_T (ĠeV)

 \rightarrow No theory/model for comparison yet

Charm and bottom v_2 in p+Pb

- Non prompt D0 v₂ in high multiplicity in p+Pb collisions Consistent with zero within uncertainties
- Clear difference between charm and bottom \rightarrow Similar with the results in p+p collisions

Charm and bottom v₂ in Pb+Pb

- Non-zero bottom muon v₂
- Charm muon v_2 is higher than bottom muon v_2 in lower p_T region and becomes similar in higher p_T of 40-60% centrality interval
- DREENA-B considering energy loss inside medium can reproduce the magnitude of v_2 both for charm and bottom muon
- DAB-MOD model including Langevin drag and diffusion underestimates charm muon ${\rm v_2}$

Summary

BACKUP