Charmonia in p+Al, p+Au and ${}^{3}He+Au$ collision systems

Krista Smith

Florida State University

Brookhaven National Lab January 21, 2020

Krista Smith Charmonia in small systems

Overview

- 1 Charmonium
- 2 Motivation for Small Systems
- 3 Signal Reconstruction
- 4 Theoretical Predictions
- **(5)** J/ψ Nuclear Modification Results
- 6 Future Analysis: $\psi(2S)$
- 7 Conclusion

Charmonium Formation at RHIC

- Quarkonia is a short-lived bound state of quark- antiquark pairs $(c\bar{c},b\bar{b})$
- Charmonium is bound state of charm-anticharm pairs
- Transitions can be made to lower states through photon emission
- Gluon gluon fusion (ggf) produces charm-anticharm quark pairs $\sim 2\%$ of all created $c\bar{c}$ pairs at RHIC will form Charmonium states
- $c\bar{c}$ pairs that form Charmonium occur with total energy below the threshold for strong decays
 - $c\bar{c}$ pair has small relative velocity $v/c\ll 1$

Charmonia Level Scheme

- Inclusive J/ψ contributions
 - \sim 60% direct production
 - $\sim 30\% \chi_c$ states
 - $\sim 10\%$ decays from $\psi(2S)$
- Vector mesons J/ψ and ψ(2S) can decay directly to dileptons via virtual photons
- χ_c states decay to J/ψ via photon emission

Phys. Letters B561 (2003), 61-72. Left: Image Credit M. Teklishyn

Krista Smith

Inclusive
$$J/\psi \rightarrow \mu^+\mu^-$$

Sources of Signal

- ggf for Charmonium production
- Feedown from χ_c and $\psi(2s)$
- Contributions from B–meson decays

Sources of Background

- Hadrons misidentified as muons
- Dimuon pairs kinematically unrelated
- Dimuons from Drell Yan
- Open heavy flavor decays
 - Predominantly D–meson decays

From top: B-meson decays, Gluon gluon fusion, Drell Yan and D-meson decays

Motivation for Small Systems

Krista Smith

Charmonia in small systems

Inclusive J/ψ Results in Small Systems

- 2003, 2008 d+Au at \sqrt{s_{NN}} = 200 GeV
 PHENIX added 3 new small systems data sets
- 2014 ³He+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- 2015 p+p, p+Al, p+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

PHENIX has measured the inclusive $J/\psi \rightarrow \mu^+\mu^-$ nuclear modification across three collision systems. The systems, which have different projectile and target sizes, are compared at the same collision energy.

Paper submitted (arXiv:1910.14487)

d+Au and p+Pb

- $\,\circ\,$ Strong suppression observed for $\psi(2{\rm S})$ with respect to ${\rm J}/\psi$
 - Not expected if only CNM effects present
 - Final state interactions with co-movers

$d{+}\mathrm{Au}$ and $p{+}\mathrm{Pb}$

- $\,\circ\,$ Strong suppression observed for $\psi(2{\rm S})$ with respect to ${\rm J}/\psi$
 - Not expected if only CNM effects present
 - Final state interactions with co-movers

- $\,\circ\,$ Strong suppression observed for $\psi(2{\rm S})$ with respect to ${\rm J}/\psi$
 - Not expected if only CNM effects present
 - Final state interactions with co-movers

Flow in Small Systems at LHC and RHIC

• Consistent with QGP production in most central collisions

PH

Phys. Rev. Letters 121, 222301

Krista Smith

Charmonia in small systems

- $\,\circ\,$ Strong suppression observed for $\psi(2{\rm S})$ with respect to ${\rm J}/\psi$
 - Would not be expected if only CNM effects are present
 - Final state interactions with co-movers

Flow in Small Systems at LHC and RHIC

- Consistent with QGP production in most central collisions
 - $\circ~$ Transport models extended to small systems and can describe the preferential $\psi(2S)$ suppression

J. High Energy Phys. 03, 015

Krista Smith

Charmonia in small systems

d+Au and p+Pb

- $\bullet\,$ Strong suppression observed for $\psi(2S)$ wrt J/ψ
 - Would not be expected if only CNM effects are present
 - Final state interactions with co-movers

Flow in Small Systems at LHC and RHIC

- Consistent with QGP production in most central collisions
 - Transport models can describe the preferential $\psi(2S)$ suppression

Question

• Evidence of final state effects on the J/ψ by comparing p+Au and $^{3}He+Au?$

Signal Reconstruction

Krista Smith

Charmonia in small systems

PHENIX Detector: Muon Arms

- MUID 2D Trigger records hits that satisfy trigger logic
- Centrality is measured using the BBC detector in the A-going direction

Dimuon Reconstructed Mass Distribution

- Unlike-sign reconstructed muon pairs
- Like-sign reconstructed muon pairs
- Correlated background
- Fit to the combinatorial background
- J/ψ , $\psi(2S)$ Crystal Ball fits
- Total fit (sum of all fits)

Theoretical Predictions

Krista Smith

Charmonia in small systems

Reweighted Shadowing Model

- nCTEQ15 and EPPS16 NLO predictions
 - Based on reweighting method which uses tighter J/ψ constraints from LHC data (ALICE and LHCb)
 - Reweighting method is not used for the lighter Helium and Aluminum nuclei
- Include PHENIX p+p measurements as baseline
- Dominant uncertainty is the energy scale $\mu_0 = M^2 + p_T^2$
 - Predictions were calculated at three different energy scales: μ_0 , $0.5\mu_0$ and $2\mu_0$
- Uncertainty band shown in results is at 68% CL, and is envelope of uncertainty bands at the three energy scales

Shao, et al: Phys. Rev. Letters 121, 052004

Krista Smith Charmonia in small systems

\mathbf{J}/ψ Nuclear Absorption Needed

- Forward rapidity: J/ψ suppression similar to open charm suppression
 - Consistent with shadowing and/or parton energy loss
- Backward rapidity: J/ ψ suppressed relative to open charm
 - Expect open charm to be enhanced by anti-shadowing
 - J/ ψ suppression consistent with absorption due to collisions with nucleons in the target
 - Possible contribution also from co-movers

Phys. Rev. Letters 112, 252301

Nuclear Absorption Model

- Parameters estimated from fit to world data
 - Absorption cross sections extracted from gluon shadowing corrected p/d+A data (EPS09, EKS98)
- Absorption cross section is modeled as function of time spent traversing the nucleus
 - Model assumes $\mathbf{c}\bar{c}$ pair expands linearly with time
 - Valid for time scales comparable with formation time in nucleus
- Folded into Shao et. al. predictions at backward rapidity only

Phys. Rev. C 87, 054910 2013

Phys. Rev. C 61, 054906 2000

Krista Smith

Transport + CNM Effects Model

- EPS09 NLO + Transport Model
- Adapted from original model by Zhao & Rapp for A+A collisions
 - Model previously extended to d+Au collisions, now to p+A collisions
- Includes fireball, MC Glauber Model for initial conditions
- Shadowing from EPS09 NLO, p_T broadening included
- Nuclear absorption cross section constrained by PHENIX d+Au data included at backward rapidity

Charmonia in small systems

J/ψ Nuclear Modification Results ARXIV:1910.14487

Krista Smith

Charmonia in small systems

 J/ψ Modification vs. Rapidity (0-100%)

• Suppression at forward rapidity for Au target

- Little modification at forward rapidity for Al target, as expected
- At backward rapidity, Al target shows enhancement but Au target does not

PH^{*}ENIX

• R_{pAu} backward rapidity inconsistent with gluon modification (anti-shadowing)

• R_{pAl} does not show same behavior as Au target $x = m \ e^{-y} / \sqrt{s_{NN}}$

Left: Data taken from arXiv:1910.14487. Right, R. Vogt

• Reweighted nCTEQ15 and EPPS16 predictions (NLO)

- Agree well with data at forward rapidity
- Do not agree at backward rapidity for Au target
 - Anti-shadowing only (no nuclear absorption)

- Reweighted nCTEQ15 and EPPS16 predictions
 - Added PHENIX nuclear absorption estimate at backward rapidity
 - Describe data reasonably well

Charmonia in small systems

p+Au Dependence on $\langle N_{coll} \rangle$

PH^{*}ENIX

• Little centrality dependence at backward rapidity

Consistent with trade off between anti-shadowing and nuclear absorption
Strong centrality dependence at forward rapidity

- CNM effects+transport model
 - ${\scriptstyle \circ}\,$ EPS09NLO with nuclear absorption at backward rapidity
- Little effect from transport model at forward rapidity
 - CNM suppression dominant

• Is modification determined only by target thickness?

- Plot data vs. mean target thickness for hard processes
- Data consistent with no projectile dependence

PH^{*}ENIX

p_T Dependence, Backward Rapidity (0–100%)

- Little modification in p+Al
- ${\circ}\,$ Similar modification between $p{+}{\rm Au}$ and ${^3{\rm He}{+}{\rm Au}}$

PH^{*}ENIX

p_T Dependence, Backward Rapidity (0–100%)

• Reweighted shadowing only - no nuclear absorption

p_T Dependence, Backward Rapidity (0–100%)

 ${\ensuremath{\, \circ }}$ Transport model with nuclear absorption and p_T broadening

 p_T Dependence, Forward Rapidity (0–100%)

• No modification for p+Al

• Similar modification between p+Au and ³He+Au

PH*ENIX

p_T Dependence, Forward Rapidity (0–100%)

• Reweighted shadowing alone does well at low p_T

p_T Dependence, Forward Rapidity (0–100%)

• Transport model with EPS09 + p_T broadening

PH^{*}ENIX

• Suppression at low p_T for most central collisions

• Competition between nuclear absorption and anti-shadowing

Charmonia in small systems

- ${\ }\circ {\ }$ Transport model includes nuclear absorption and p_T broadening
- Describes data well across full p_T range

p+Au Centrality Dependence, Fwd Rapidity

Very strong suppression in most central collisions

- Transport effects small at forward rapidity
 - EPS09 shadowing dominates model calculations
 - Shadowing not strong enough in central collisions

³He+Au to p+Au Ratio (0-20%)

• ³He+Au shows 11% stronger suppression than p+Au at backward rapidity

Summary of J/ψ Results

- Very strong forward rapidity suppression for most central collisions
 - $\circ\,$ Reweighted EPPS16 and nCTEQ15 shadowing describe 0-100% forward rapidity suppression
 - EPS09 centrality dependence (linear) assumed in transport model gives much weaker suppression than observed for most central collisions
- ${\circ}\,$ Small increase in suppression for ${^3{\rm He}}{+}{\rm Au}$ over $p{+}{\rm Au}$
 - Consistent with small final state effect
- Absorption is significant at RHIC energies at backward rapidity
- Data suggest p_T broadening is needed in model calculations

Future Analysis: $\psi(2S)$

Krista Smith

Charmonia in small systems

Motivation for Future Work

Phys.Rev.Lett. 121 (2018)

- p+Au and ³He+Au CNM effects expected to be similar
- Study $\psi(2{\rm S})$ modification in $p{+}{\rm Au}$ and ${^3{\rm He}{+}{\rm Au}}$
 - Currently, no R_{pA} measurement of $\psi(2{\rm S})$ in PHENIX muon arms
 - The $\psi(2S)$ is more loosely bound \rightarrow more susceptible to final state effects than the J/ψ
 - Different rapidities: different CNM effects, different $dN_{ch}/d\eta$, different final state effects

Motivation for Future Work

- p+Au and ³He+Au CNM effects expected to be similar
- Study $\psi(2S)$ modification in p+Au and ³He+Au
 - Currently, no R_{pA} measurement of $\psi(2S)$ in PHENIX muon arms
 - The $\psi(2s)$ is more loosely bound \rightarrow more susceptible to final state effects than the J/ψ
 - Different rapidities: different CNM effects, different $dN_{ch}/d\eta$, different final state effects
- Du & Rapp transport model (hydrodynamic flow) predicts stronger suppression for $\psi(2S)$ than J/ ψ in p+Au collisions

$\psi(2S)$ Yield Comparison - NO FVTX

 $d{+}\mathrm{Au}$ centrality dependent $\psi(2S)$ raw counts for |y|<0.35 in 5 GeV/c binwidths

Centrality	d+Au, mid rapidity
0-20%	19 ± 16
2040%	39 ± 15
40–60%	34 ± 11
60–84%	29 ± 9

- Raw counts in current data look high enough to extract the $\psi(2S)$ in $p+Au(\sim 1k)$ and $p+Al(\sim 500)$ as a function of p_T with centrality
- Challenge will be careful systematic uncertainty study of $\psi(2{\rm S})$ yield extraction

Phys. Rev. Letters 111, 202301

Initial Fits - North Arm

Initial Fits - South Arm

PH^{*}ENIX

Potential FVTX Track Combinations

- $\bullet\,$ Phys. Rev. C 95, 034904 measured $\psi(2{\rm S})/\psi(1{\rm S})$ ratio using muons which both had FVTX tracks
 - Best mass resolution (pair efficiency reduced)
- For current analysis, considering using one muon FVTX track and one muon with no FVTX track
 - Acceptance will increase while resolution will decrease
- Also considering using no FVTX track matching
 - Best acceptance
- Planning to measure modification for each case and compare as cross check
- Decision will be based on systematic and statistical uncertainties

Conclusion for Charmonia Analysis

- Measurement of $\psi(2S) R_{AB}$ can provide more information regarding cold nuclear matter (CNM) effects, particularly centrality dependent gluon shadowing
- It can also provide information regarding nuclear absorption, a CNM effect that does not seem as significant at LHC energies

LHC and RHIC have both published results consistent with hydrodynamic flow in small systems

- Suppression in ³He+Au wrt p+Au in most central collisions (0–20% Centrality) at backward rapidity observed for the J/ ψ , consistent with small final state effect
- The $\psi(2s)$ is more loosely bound, more susceptible to final state effects than the J/ψ
- Study of the modification of the excited state, $\psi(2S)$, could best indicate if final state effects are due to presence of a QGP

Charmonia in small systems

Theory References

- Kusina, Aleksander and Lansberg, Jean-Philippe and Schienbein, Ingo and Shao, Hua-Sheng Gluon Shadowing in Heavy-Flavor Production at the LHC *Phys. Rev. Lett* 121, 052004
- [2] Lansberg, Jean-Philippe and Shao, Hua-Sheng Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions *Eur. Phys. J.* C77, 2017
- [3] Du, Xiaojian and Rapp, Ralf In-Medium Charmonium Production in Proton-Nucleus Collisions J. High Energy Phys. 03, 2015
- [4] Du, Xiaojian and Rapp, Ralf Sequential Regeneration of Charmonia in Heavy-Ion Collisions Nucl. Phys. A943, 2015
- [5] D. McGlinchey, A.D. Frawley and R. Vogt Impact-parameter dependence of the nuclear modification of J/ψ production in d+Au collisions at √s_{NN} =200 GeV Phys. Rev. C 87, 054910 (2013)

Charmonia in small systems

Charmonia in small systems

Invariant Yields as a function of p_T

Krista Smith

Charmonia in small systems

- At forward rapidity with same projectile, quite different suppression
- At backward rapidity, expect trade off between absorption and shadowing

Charmonia in small systems

Comparison of LHC and RHIC

Eur. Phys. J. C (2016) 76: 107

Krista Smith

Charmonia in small systems