

ALICE: Tracking and computing resources

David Rohr drohr@cern.ch, CERN SPHENIX Computing Workfest Brookhaven National Lab, NY 13.1.2020

ALICE in Run 3: 50 kHz Pb-Pb

Record large minimum bias sample.

- All collisions stored for main detectors < no trigger.
- Continuous readout 🧯 data in drift detectors overlap.
- 50x more events, 50x more data.
- Cannot store all raw data (online compression.
- Use GPUs to speed up online processing.

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 20 ms in production).
- Tracks of different collisions shown in different colors.

Online / Offline Computing in ALICE in Run 3

Online / Offline Computing in ALICE in Run 3

13 1 2020

ALICE Run 3 Data Taking & Online Computing

Detectors

Fast network

- Sub-event building ٠
- Processing steps that need access to all data from a link (e.g. integrated digital current)

Synchronous:

- Full TPC tracking for compression (on GPUs).
- ITS / TRD tracking of subset of events for calibration.
- Integrated digital currents produced for calibration.
- **Postprocessing:**
 - Create space-charge and calibration map.
- **Asynchronous:**
 - Full reconstruction with final calibration for all detectors. (TPC not so dominant, split between Run 3 farm and GRID).

nodes, 1500 GPUs)

EPN Farm (750 – 1500

Round-robin distribution: An EPN receives a full timeframe, and has 30 seconds for processing it

- Synchronous TPC tracking @50kHz Pb-Pb defines peak-load for Run 3 farm.
 - GPU usage for TPC tracking mandatory!
 - Asynchronous reconstruction should leverage available GPU resources as good as possible.
 - Must run efficiently on CPUs on the GRID.
 - GPU reconstruction code written in a general way that runs on CPU & GPU with identical result.

Tracking in ALICE in Run 3

٠

•

Bulk of computing workload:

Synchronous

- >90% TPC tracking / compression
- Low load for other detectors

Asynchronous

- TPC among largest contributors
- Other detectors also significant

Tracking in ALICE in Run 3

Bulk of computing workload:

Synchronous

- >90% TPC tracking / compression
- Low load for other detectors

Asynchronous

- TPC among largest contributors
- Other detectors also significant

ALICE GPU processing strategy

Baseline solution (almost available today): TPC + part of ITS tracking on GPU

Mandatory solution to keep up with the data rate online.

Defines number of servers / GPUs.

Optimistic solution (what could we do in the ideal case): Run most of tracking + X on GPU.

- Extension of baseline solution to make best use of GPUs.
 - Ideally, full barrel tracking without ever leaving the GPU.
 - In the end, we will probably be somewhere in between.

Asynchronous phase should make use of

Available in the O² farm anyway.

Future HPC / grid sites may have GPUs.

(inner tracking system)

52 pad rows TP

ime projection chambe

insition radiation d

the available GPUs.

Illustration of splitting in sectors

 Sector-local seeding can lead to some inefficiencies at sector borders.

Global Tracking

Step 1 (Seeding)

- Step 1: Combinatorial seeding
- Searches for three clusters composing straight line
- Concatenates straight lines
- Only step with non-linear runtime. row r + 2

dv

dx

- Strategy: deal with the combinatorics as early as possible.
- Seed everywhere, each track has at least some seedable part, no need to be 100% efficient.

row r + 2

row r + 4

row r

row r - 2

David Rohr, drohr@cern.ch

row r - 2 (

row r

Step 2 (Track Following)

- Step 2 (Simplified Kalman Fit):
- Track parameters are fit to the seed.
- Trajectory is extrapolated to adjacent TPC row.
- Cluster closest to extrapolated position is found.
- Fit is improved with new cluster.

Illustration of Tracking

Illustration of step 1: . (Seeding) •

Illustration of Tracking

Illustration of step 2: • (Track following) •

Illustration of Tracking

- Parallel track following
- can find the track se-
- veral times.
- In this case, an addi-
- tional step selects the
- best instance of the
- track.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.

z (beam and TPC drift direction)

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.

z (beam and TPC drift direction)

The tracking challenge – How the tracking will work

- The TPC sees multiple overlapped collisions (shifted in time).
- Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute *z* position.
- Standalone ITS tracking.

ALICE

The tracking challenge – How the tracking will work

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.

Precise tracking needs z for:

- Cluster error parameterization
- Inhomogeneous B-field
- Distortion correction

Effects smooth 《

irrelevant for initial trackletting

David Rohr, drohr@cern.ch

13.1.2020

The tracking challenge – How the tracking will work

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.

ALICE

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine *z* = 0 estimate, refit track with best precision

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined z-position but only a time. They can be shifted in z arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks in one ITS read out frame, select all TPC tracks with a compatible time (from z = 0 estimate).

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks in one ITS read out frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).
- Match TPC track to ITS track, fixing z-position and time of the TPC track.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks in one ITS read out frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).
- Match TPC track to ITS track, fixing z-position and time of the TPC track.
- Refit ITS + TPC track outwards.

- Tracking continuous data...
 - The TPC sees multiple overlapped collisions (shifted in time).
 - Other detectors know the (rough) time of the collision.

- Problem: TPC clusters have no defined *z*-position but only a time. They can be shifted in *z* arbitrarily.
- GEM amplification produces ions that deflect the electrons during the drift. The correction of these space-charge distortions requires the absolute z position.
- Standalone ITS tracking.
- Standalone TPC tracking, scaling *t* linearly to an arbitrary *z*.
- Extrapolate to x = 0, define z = 0 as if the track was primary.
- Track following to find missing clusters. For cluster error parameterization, distortions, and B-field, shift the track such that z = 0 at x = 0.
- Refine z = 0 estimate, refit track with best precision
- For the tracks in one ITS read out frame, select all TPC tracks with a compatible time (from *z* = 0 estimate).
- Match TPC track to ITS track, fixing z-position and time of the TPC track.
- Refit ITS + TPC track outwards.
- Prolong into TRD / TOF.

TPC Tracking performance

- Speed-up normalized to single CPU core.

- Red curve: algorithm speed-up.
- Other curves: GPU v.s. CPU speed-up corrected for CPU resources.
 - How many cores does the GPU replace.
- Significant gain with newer GPU (blue v.s. green).
- GPU with Run 3 algorithm $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 15 replaces > 800 CPU cores Running Run 2 algorithm. (blue * red). (at same efficiency / resolution).5

- We see ~30% speedup with new GPU generation (RTX 2080 v.s. GTX 1080)

David Rohr, drohr@cern.ch

Status of reconstruction steps on GPU:

- All TPC steps during synchronous reconstruction are required on the GPU.
- Synchronous ITS tracking and TPC dE/dx in good shape, thus considered baseline on the GPU.
- Remaining steps in tracking chain part of optimistic scenario, being ported step by step to GPU.
 - Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps current blocker is TPC ITS matching.

(see later)

TPC Cluster removal

Memory Reuse

Common GPU

Components:

arose few months ago. since clusterizer does not fit in FPGA.

13 1 2020

Status of reconstruction steps on GPU: Baseline scenario: all steps almost ready

In operation

Nearly ready

Being studied

Development not started

David Rohr, drohr@cern.ch

GPU API Framework

Sorting

Material Lookup

• Status of reconstruction steps on GPU:

Different reconstruction steps enabled in synchronous and asynchronous reconstruction.

Status of reconstruction steps on GPU:

Different reconstruction steps enabled in synchronous and asynchronous reconstruction.

Barrel Tracking Chain

Many steps of barrel tracking r	un consecutively.	Part of baseline so	enario In operation
port Onsecutive steps to GPL	avoid data transfer. Strategy:		Being stud d
Start with standalone T	PC and ITS tracking.		Not started
– Standalone ITS	tracking needed since TPC tracks lack abs	olute time.	
Beginning O_OITS tracking us	es vertexer as first step.		
- TPC tracking ha	as no vertex constraint, starts with segment efits.	tracking in individual TPC secto	rs, than merges the
 ITS and TPC tracks are 	e matched, fixing the time for the TPC.		
The afterburner propage ITS standalone tracking	ates unmatched TPC tracks into the ITS an	d tries to find matching hits of s	hort tracks not found in
Tracks are extrapolate	d outwards into the TRD, once the time is fix	(ed.	
 TRD standalon 	e tracking and matching (like for ITS) is less	efficient due to many fake TRD	tracklets.
 Optionally, after TRD tr 	acks can be extrapolated to TOF.		
 Global refit uses the inf 	ormation from all detectors.		
V0 finding			
 In parallel, the TPC cor 	npression chain starts after the TPC standa	lone tracking:	
 Junk clusters and very low p_⊤ junk 	re removed, depending on the strategy (see below 10 MeV/c.	later) this might require extra s	tep for identification of
 Track model (ar 	nd other steps) reduce the entropy for the fir	nal entropy encoding.	
 Final entropy er 	ncoding using ANS. Not clear yet whether th	is will run on GPU efficiently. Al	ternatively, transport
entropy-reduce	d clusters to host and run entropy encoder t	here. Match TPC tracks to	
common GPU Components:	PU API Framework Sorting	Lookup	Memory Reuse
1.2020	David Rohr, drohr@cerr	i.ch	

TPC Data Compression

Factor TPC Data compression involves 3 steps: 104 Compression F 8 Entropy reduction (Track model, logarithmic precision, etc.) Entropy encoding (Huffman, Arithmetic, ANS) 10³ Removal of tracks not used for physics. 20 10² Steps 1 + 2 implemented for Run 2. ALICE Performance 2018/05/16 Current compression factor 8.3x. 2018, pp, vs = 13 TeV 10 Average compression ratio: 8.34x

100

200

300

400

500

600

700

Number of TPC Clusters

800

2.

3.

TPC Data Compression

Fit failed **Unassigned clusters** TPC Data compression involves 3 steps: **Reconstructed Tracks** Entropy reduction (Track model, logarithmic precision, etc.) **Removed Clusters** Entropy encoding (Huffman, Arithmetic, ANS) Removal of tracks not used for physics. 3. Steps 1 + 2 implemented for Run 2. Current compression factor 8.3x. Prototype for Run 3 achieves factor 9.1x (TDR assumed 10x). Step 3 must close the gap to the required compression in Run 3. Remove clusters from background / looping tracks. Adjacent to low- p_{T} track < 50 MeV. Adjacent to secondary leg of low- p_{T} track < 200 MeV. Adjacent to any track with $\varphi > 70^{\circ}$ in the fit. Protect clusters of physics tracks. Not Adjacent to any physics-track (except $\phi > 70^{\circ}$). In addition: **Noisy TPC pads** Use reconstructed track quantities to reduce entropy.

TPC Cluster Entropy Reduction

Absolute positions 0.5 0.4 Probability 0.3 0.2 Differences 0.1 0.5 0 0.4 2 0 6 8 10 Probability 0.3 Position 0.2 0.1 0 Residuals 0 2 6 8 10 0.5 Position 0.4 Probability 0.3 0.2 0.1 0 2 6 10 0 8

Position

- Cluster Properties stored in integer format, such that 1 bit ~ required resolution.
- Exploit entropy encoding, i.e. some values are more probable than others.
 - Does not work well for absolute positions:
 - All positions have equal probability.
 - Can sort clusters and store only position differences.
 - Order is not important.
 - At high occupancy, all differences should be small.
 - With tracking, store only cluster to track residuals
 - Even less entropy for attached clusters.
 - Stick to differences for unattached clusters.
 - Unfortunately, less clusters stored as differences (~50%).
 - → Larger differences (~ factor 2 ≤ 1 bit).
 - → Need 0.5 more bits (1 * 50%) per unattached cluster.
 - Net compression still better.

• Minimize residuals. (Smaller entropy @ Better Huffman compression.)

- Minimize residuals. (Smaller entropy © Better Huffman compression.)
 - Constraint: Clusters shall be stored in native TPC coordinates (Row, Pad, Time), independent from calibration.

• Problems:

- Helix prolongation yields large residuals (inefficient compression.
 - Does not account for space charge distortions.
- Linear back-transformation cannot revert transformation based on full calibration.

Large residuals to raw coordinates

- Minimize residuals. (Smaller entropy @ Better Huffman compression.)
- Back to start!

- Minimize residuals. (Smaller entropy C Better Huffman compression.)
 - Employ fast, reversible linear approximation. (In principle, every transformation works.)
 - Refit track in distorted coordinate system.

- Minimize residuals. (Smaller entropy & Better Huffman compression.)
 - Employ fast, reversible linear approximation. (In principle, every transformation works.)
 - Refit track in distorted coordinate system.
- Store residuals in pad, time.
 - Currently, storing initial q/p_T, sin(φ), and tan(λ) with low precision.
 - During decompression, perform the same refit with linear transformation.
- Additional benefit:
 - Cluster to track association is stored intrinsically.

TPC Cluster Entropy Reduction

- 1. Can use track information for other properties: e.g. clusters of a track should have similar charge.
 - Can store charge wrt. average track charge.
 - Better use truncated mean / median to compensate fake clusters, could consider track angle (basically dE/dx).
- 2. No need to store charge / width always with full precision.
 - Need only n significant bits (least significant bits irrelevant for large charge).
 - Basically we need a custom floating point format (no sign, custom size of exponent / mantissa).
 - Instead, we use our integer format and force all insignificant bits to 0 (with correct rounding).
 (insignificant = n bits after first non-zero bit: 00110111 Colored 00111000 for n = 3.)
 - Many values are prohibited, entropy coding assigns optimal short representations for allowed values.
- 3. Unfortunately, the gains of these two strategies do not accumulate directly:
 - Strategy 1 reduces the numbers in general (and introduces negative numbers), while strategy 2 yields same-size representation for all values.
 - Might only be able to reduce the **n** of **strategy 2** further in combination.
- 4. Can do the same for cluster shape / size.

TPC Cluster rejection

ALICE Run 3 Data Rates

- Data rates of ALICE detectors with large data contribution.
- All rates in GB/s during 50 kHz Pb-Pb (peak rates).
- For reference: Data rates assumed in TDR: 88 (66.5 105.2).
- TPC Biggest contributor to data rate.
- \rightarrow TPC compression most critical.
 - Assumed factor 20x in TDR. (Factors badly comparable, as raw format changed compare rates.)
 - TPC data rejection alternatives
 - Reject only clusters of identified background / tracks (loopers).
 Rejects: 12.5% 39.1%
 - Keep only clusters attached or in proximity of identified signal tracks.
 Rejects: 37.3% - 52.5%

Detailed layout of GPU software (track fit example)

Detailed example of the track fit code.

- Majority of the code is in Algorithm.cxx, which is shared between CPU and all GPU versions.
- libFit can be loaded on all compute nodes (no dependency on CUDA / OpenCL).
 - The cuda and OpenCL tracking libraries (libFitCUDA and libFitOpenCL) can be loaded when the respective runtime (libCUDA or libOpenCL) is present.
- Common source code for CPU / GPU.
 - Supporting CUDA
 - HIP (AMD)
 - OpenCL (2.2 or clang 9)

- ALICE will take **50 kHz of minimum bias Pb-Pb** data in Run 3.
- There will be **no triggers** but data is compressed online in software.
- High data compression factors require online reconstruction, in particular TPC tracking.
- Full tracking for the TPC in the synchronous phase, tracking for ITS and TRD for few percent of the events.
- Full reconstruction with final calibration in the asynchronous phase.
- The majority of the synchronous phase will run on GPUs, asynchronous phase can run on GPU but also in the GRID.
- In an optimistic scenario, we can offload almost full barrel tracking to GPU.
- TPC Reconstruction more challenging than today due to space charge distortions.
- TPC Data compression still big issue:
 - Entropy compression factor of **9.1x** (10% short wrt. TDR).
 - Cluster rejection turns out to be difficult.
 - Random high- p_{T} tracks fake-protect junk clusters.
 - Incomplete track merging reduces the number of looping legs to be removed.
 - Still significant fraction of unattached clusters.
 - 13% of clusters not accessible by tracking (very low p_{T} , charge cloud from low p_{T} protons, noisy pads).
 - Strategy B could increase rejection ratio at the risk of loosing physics tracks in case of issue with calibration.
- Total data rate still in agreement with the TDR since we can save at other places.
- GPU code implemented in shared code also for CPU, algorithm speed-up ca 20x, 1 GPU replaces ca 40 CPU cores.