

ALICE: Space-charge calibration overview

Ernst Hellbär, Marian Ivanov, Ruben Shahoyan, Jens Wiechula

> TPC Mini Workshop July 11, 2019

Overview

Expectations and requirements

Calibration approach

Calculation of distortions and current activities

Space charge in the ALICE TPC

Sources of space charge

- Primary ionization
- Ion backflow (IBF)

Dependencies

- Interaction rate (IR)
 - Up to 50 kHz in Pb-Pb collisions
- Ion drift time
 - **160 ms 200 ms** in Ne-CO₂-N₂ (90-10-5)
 - ➡ lons from 8000 to 10000 events contributing to space-charge density at IR of 50 kHz
- Number of back-drifting per primary electron:
 - $\varepsilon = IBF \times gain$
 - IBF ~1 % with 4-GEM stack and optimized voltage settings
 - Gain = 2000

⇒ε = 20

Parameterization of space-charge density

Assuming φ symmetry

• Gain variations across the GEM and dead zones between (parts of) chambers will introduce a φ modulation

Expected space-charge distortions

ALICE: Space-charge calibration overview

Space-charge fluctuations

6

Contributions

• Relative fluctuation of the number of pileup events:

 $\frac{\sigma_{N_{mult}}}{M} \approx 1.4\%$

 $\mu_{N_{mult}}$

- Multiplicity fluctuations:
- Variations of the ionization of a single track:

$$\frac{\sigma_{Q_{track}}}{\mu_{Q_{track}}} \approx 1.7 \%$$

• Spatial range over which space-charge fluctuations are relevant for the distortions

$$\frac{\sigma_{SC}}{\mu_{SC}} = \frac{1}{\sqrt{N_{pileup}^{ion}}} \sqrt{1 + \left(\frac{\sigma_{N_{mult}}}{\mu_{N_{mult}}}\right)^2 + \frac{1}{F\mu_{N_{mult}}} \left(1 + \left(\frac{\sigma_{Q_{track}}}{\mu_{Q_{track}}}\right)^2\right)}$$

Fast MC agrees well with analytical formula

Fluctuations of 2.5 - 3.5 %

- 5 7 mm in r, 2 3 mm in rφ
 - Required precision: 200 µm

11-Jul-2019 ALICE: Space-charge calibration overview

 $\approx 1.1\%$

Nion Nileup

Fluctuation studies

Fluctuation scenarios

- Randomly distributing discs of ions in z
 - Different number of pileup events
- Average scenario with ion discs from 130k events
- Scaled to corresponding number of pileup events

Residual distortions

- Fluctuation map used for distortion
- Average map used for correction

11-Jul-2019 ALICE: Space-charge calibration overview

Update frequency of correction map

Corrections performed with the same space-charge density map as the distortions but shifted by Δz in z

Shift by $\Delta z = 16$ cm already results in residual distortions of a few 100 μ m

- Corresponds to 10 ms for an ion drift time of 160 ms
- → Update interval of 𝒪(5 ms) required

Ernst Hellbär - Goehte-Universität Frankfurt

Calibration procedure in 2015 - 2018

TPC track finding and matching to external detectors ITS, TRD and TOF

Refitted ITS, TRD and TOF **track segments** are interpolated to the TPC as **reference points** for the **true track position** at every padrow

Measurement of δY , δZ residuals between distorted TPC clusters and reference points

Relation between 2D residuals and real 3D distortion vector {dr, d $r\phi$, dz}

- $\delta Y = dr \varphi dr \times tan(\varphi)$ φ : local inclination angle
- $\delta Z = dz dr \times tan(\lambda)$ λ : dip angle

Correction of each TPC cluster by smooth Chebyshev parameterization of extracted distortion vectors

11-Jul-2019 ALICE: Space-charge calibration overview

Performance of ITS-TRD interpolation

11-Jul-2019 ALICE: Space-charge calibration overview

Ernst Hellbär - Goehte-Universität Frankfurt

Integrated digital currents

Signals at ROCs integrated over 160 ms are proportional to the current spacecharge density in the TPC drift volume

• $\rho_{SC} \sim I_{ROC} \times \varepsilon$

Precise measurement of the space-charge density in space and time

Calculation of distortions from measured space-charge density challenging in required time intervals

- ➡ Approach of storing the derivative of the space-charge density
 - Different luminosity intervals as the space-charge density does not scale with the interaction rate

$$\vec{\Delta} = \vec{\Delta}_{
m ref} + \sum_{i} \frac{\partial \vec{\Delta}_{
m ref}}{\partial_{
ho_{
m sc}^{i}}} \delta
ho_{
m sc}^{i}$$

Space-charge calibration

Calibration in two steps:

1) Synchronous stage

• Corrections to 𝒪(mm) required for cluster-to-track association and tracking

2) Asynchronous stage

• Corrections to restore the intrinsic track resolution of $\mathcal{O}(100 \ \mu m)$

Space-charge calibration

1) Synchronous stage

- Pre-calculated correction map obtained by averaging over time intervals of $\mathcal{O}(\min)$
 - Simulation or ITS-TRD interpolation of previous data
 - Regularly **updated and scaled to the average particle density** to account for fluctuations in time
 - Integrated digital currents
 - Mean interaction rate
- ➡ Correction of average distortions and part of the fluctuations

2) Asynchronous stage

- High resolution correction map obtained by ITS-TRD interpolation of the same data over a time interval $\mathcal{O}(\min)$
 - Scaling by 3D digital current measurement in time intervals (ms) << tion to account for fluctuations in space and time
- ➡ Correction of fluctuations remaining after first stage

Expected TPC performance

11-Jul-2019

ALICE: Space-charge calibration overview

Ernst Hellbär - Goehte-Universität Frankfurt

Calculation of space-charge distortions

Space charge correction

$$\rho \rightarrow \mathsf{E}_{\mathsf{map}} \rightarrow \Delta \mathsf{xyz}_{\mathsf{map}} \rightarrow \mathsf{observable}$$

$$\rho \leftarrow \mathsf{E}_{\mathsf{map}} \leftarrow \Delta \mathsf{xyz}_{\mathsf{map}} \leftarrow \Box$$

1.
$$\nabla^2 V(r, \rho, z) = -\frac{1}{\epsilon_0} \rho(r, \phi, z)$$
2.
$$\vec{E}(r, \rho, z) = -\nabla V(r, \rho, z)$$
3.
$$\hat{\delta}_{rE}(r_i, \phi_j, z_k) = c_1 \int_{z_k}^{z_{k+1}} \frac{E_r}{E_z} dz + c_2 \int_{z_k}^{z_{k+1}} \frac{E_{\phi}}{E_z} dz$$

$$\hat{r} \delta_{\phi rE}(r_i, \phi_j, z_k) = c_2 \int_{z_k}^{z_{k+1}} \frac{E_r}{E_z} dz - c_1 \int_{z_k}^{z_{k+1}} \frac{E_{\phi}}{E_z} dz$$

$$\hat{\delta}_z(r_i, \phi_j, z_k) = \int_{z_k}^{z_{k+1}} \frac{v'(E)}{v_0} (E - E_0) dz$$
4. Follow the driftline from
$$(r_i, \phi_j, z_k) \rightarrow (r_i + \delta r_i, \phi_j + \delta \phi_j, z_0 + \delta z_k)$$

5. Assign distortion $\text{Dist}(r_i, \phi_j, z_k) = (\delta_r, r\delta_\phi, \delta z)$

Solution of Poisson equation by 2D (3D) multigrid method

Most time spent in integration of distortions along electron drift lines

• Significant speed-up by integrating one full z slice after the other

Profile for Space Charge Distortion (case: Case: CPU, Order=2, FCycle)

cted

11-Jul-2019 ALICE: Space-charge calibration overview

Ernst Hellbär - Goehte-Universität Frankfurt 16

Convolutional neural network studies pr

TMVA, Keras and ROOT6

Supervised learning using iterative simulations as input

Significant speed-up of distortion calculation from space-charge density or digital currents

Current activities

- Required granularity for precise modelling of flutuations
- Organizing GPU resources for large scale studies

Scatter Plot(18,17,17,4,0,0.0) mean=0.0100,stddev=0.0126

Simulation of space-charge movement

Realistic simulation of ion movement through the TPC drift volume

- Propagate space-charge density on a regular grid over time
 - Continuity equation: $\frac{\partial \rho}{\partial t} = -\nabla(\rho \mathbf{u})$
- Slow iterative procedure
 - Digital currents + Density \rightarrow E field \rightarrow Ion drift + distortions
- Prerequisite for precision studies of distortion correction
 - Time intervals for average and residual correction maps
 - Scaling of correction maps by integrated digital currents
 - Input for CNN

ALICE: Space-charge calibration overview

17

Summary

Requirements for space-charge distortion calibration

- Correct space-charge distortions down to the intrinsic performance of the TPC
 - Tracklet resolution of *O*(100 μm)
- Update interval of (5 ms) to account for fluctuations
 - Fast distortion / correction calculation

Calibration approach

- First correction by scaled average map
 - Precision O(1 mm) sufficient for tracking
 - Stored average maps $\mathcal{O}(\min)$ from simulation or ITS-TRD interpolation
 - Scaling by integrated digital currents to current particle density
- Second correction to account for **fluctuations in space and time**
 - **ITS-TRD interpolation** for time intervals $\mathcal{O}(\min)$ on the actual data
 - High precision scaling by 3D digital currents for time intervals $\mathcal{O}(5 \text{ ms})$