
COMPUTATIONAL SCIENCE INITIATIVE
MEIFENG LIN
BROOKHAVEN NATIONAL LABORATORY

OUTLINE

▸ BNL/CSI Overview

▸ HPC Project Highlights

▸ Some Comments/Thoughts on Exascale Computing

▸ Some Side Notes

�2

COMPUTATIONAL SCIENCE INITIATIVE

▸ Established in 2015

▸ An umbrella to bring together computing and data
expertise across BNL

▸ Aims to foster interdisciplinary collaborations in domain
sciences, computer science, applied math and data
analytics.

▸ Focus areas:

▸ High performance and novel computing, including
quantum computing

▸ Data analytics at scale, incl. scalable machine learning,
visual analytics, workflow, provenance, etc.

▸ State-of-the-art computing and storage facility

▸ 5 departments, ~50 staff members and growing!

�3

CSI ORGANIZATIONAL STRUCTURE �4

Robert Tribble
Deputy Laboratory Director

Barbara Chapman, Chair
Computer Science and

Mathematics

Shinjae Yoo, Lead
A.I. and Machine Learning

Group

Nicholas D’Imperio, Chair
Computational Science  

Laboratory

Layla Hormozi, Lead
Quantum Computing Group

Adolfy Hoisie, Chair
Computing for  

National Security

Shantenu Jha, Chair
Center for Data-Driven  

Discovery

Eric Lançon, Chair
Scientific Data and  
Computing Center

Kerstin Kleese van Dam
Director

Francis J. Alexander
Deputy Director

Robert Harrison 
Chief Scientist

Meifeng Lin, Lead
High Performance  
Computing Group

MACHINE LEARNING AND A.I. GROUP

▸Group Lead: Shinjae Yoo

▸ Specific Focus:

▸ Real-Time Analysis of Experimental Data (NSLS II,
CFN, Cryo-EM, Solar Power)

▸ Causal Analysis (Biology, Power Grid)

▸Natural Language Processing for Science

▸ Robustness, Explainability, Reproducibility

▸Quantum Machine Learning

�5

NEW QUANTUM COMPUTING GROUP
▸Group Lead: Layla Hormozi

▸ Specific Focus:

▸Quantum Networking

▸ Connecting Quantum Networking and Quantum
Computing

▸Optimized Quantum Algorithm Development
for Nuclear, High Energy, and Condensed
Matter Physics

▸Quantum Error Characterization and Correction

�6

HIGH PERFORMANCE COMPUTING GROUP �7

▸ Group Lead: Meifeng Lin

▸ The High Performance Computing Group at CSI help the scientists get
their codes to run on modern computing architectures

▸ Research domains range from materials science, quantum chemistry,
high energy and nuclear physics, climate science, etc.

▸ Making use of state-of-the-art software tools and hardware
architectures:

▸ Performance profiling, analysis and modeling

▸ MPI, OpenMP, OpenACC, …

▸ CUDA, HIP, SyCL, …

▸ Performance portable frameworks

HPC PROJECT HIGHLIGHTS

�8

Work supported by BNL LDRD #17-029, and in part by DOE BES

�9

References:
1. Dong et al., NYSDS 2018 (arXiv:1808.10375)
2. Fang et al., “Accelerated Computing for X-ray Ptychography at NSLS-II”,

book chapter in “Handbook on Big Data and Machine Learning in the
Physical Sciences”

3. Fang et al., in preparation

Zhihua Dong
CSI

Xiaojing Huang
NSLS-II

Hanfei Yan
NSLS-II

Leo Fang
CSI

Sungsoo Ha
CSI

Wei Xu
CSI

Meifeng Lin
CSI

Yong Chu
NSLS-II

Stuart Campbell
NSLS-II

HPC for NSLS II: X-ray Ptychographical Image Reconstruction
via Distributed & GPU Computing

REAL-TIME ANALYSIS AND STEERING OF EXPERIMENTS
▸ Facility users at CFN and NSLS II typically have limited time allocated.

▸ Getting the right setup of the experiments often takes trial-and-error.

▸ Brighter light sources mean faster data rates and larger data volumes.

▸ Analyzing data could take a long time

▸ Affects the number of experiments users can do

▸ Need to improve in-situ data analysis tools

▸ Speed - HPC

▸ Usability - intuitive GUI

▸ Maintainability - high-level programming abstractions

�10

3.18/3c02e011.doc 3 (03/2016)

includes two major components: 1) back-end X-ray diffraction algorithm kernels on CPU/GPU
clusters, and 2) front-end user-friendly GUI for data analysis control, interaction and
visualization. This framework will allow the user to build diffraction problem easily, run the
calculation on CPU/GPU clusters and visualize results in an interactive manner. As followed, we
will discuss the techniques in both components.

Figure 1: Framework of X-ray Diffraction simulation toolkit including back-end HPC computing and Front-

end GUI with user interaction.

1.1 The X-ray Diffraction Simulation Theory
X-ray diffraction from crystals is a powerful tool to identify the crystal structure, accurately
measure the strain and manipulate X-rays. Although the common kinematical-diffraction theory
suffices for weak diffraction from a small crystal or a heavily strained one, for strong diffraction,
when the multiple-wave scattering effect is not negligible, a more rigorous dynamical-diffraction
theory must be employed. The Takagi-Taupin equations (TTE) [7][8] are known to be the
fundamental equations in dynamical diffraction theory and are capable of dealing with an
arbitrary strain field and an illuminating wave front. They were proven extremely powerful in
solving general dynamical-diffraction problems. Except in a few special cases, however, only
numerical solutions are possible. Current numerical algorithms that based on a finite-difference
scheme have the difficulty of solving the problem with a general boundary condition, thereby
limiting their applications for crystals with complex shapes and mixed diffraction geometries.
Moreover, the finite-difference scheme does not provide an insight into the diffraction physics; it
cannot distinguish the diffraction mode (kinematical vs. dynamical) by itself. Therefore, even for
a kinematical diffraction problem it can still take unnecessary computation steps for a dynamical
diffraction computation.
 In 2014, our co-PI scientist of this project proposed a universal modeling approach [1] that can
simulate dynamical diffraction in a general case, based on an iterative solving procedure.
Basically, it converts TTE into integral equations for which an integral solution satisfying the
boundary condition is readily obtained. The iterative process represents the transition from a
kinematical diffraction solution to a dynamical diffraction one, therefore unnecessary
computation steps can be avoided and the accuracy of the solution can be controlled by setting a
threshold value. We demonstrated the capability of our approach with a simulation shown in
Figure 2.

Front-end GUI

Back-end HPC

NVIDIA

Image Credit: Wei Xu

NSLS II
‣ NSLS II - National Synchrotron Light

Source II (there was an NSLS at BNL -
now CSI)

‣ State-of-the-art, medium-energy (3-
billion-electron-volt, or GeV) electron
storage ring that produces x-rays up to
10,000 times brighter than the NSLS

‣ First light: 2014

‣ 28 beam lines in operation; 1 under
development

‣ HXN - Hard X-ray Nanoprobe

‣ CSX - Coherent Soft X-ray Scattering

�11

HXN

CSX

DATA AND COMPUTATION CHALLENGES
▸ Ptychography reconstruction at HXN
▸ Typically O(10,000) - O(100,000) scan images
▸ ~200x200 pixels (in floating points) per image
▸ Data size of input images: O(1GB) to O(10 GB)

▸ Memory requirements for the DM algorithm (including
temporary buffers):
▸ Single-mode: >4x of input size
▸ Multi-mode: >10x of input size
▸ Need multiple GPUs for sufficient memory

▸ Difference map iterative algorithm: O(100) iterations
▸ Serial Python code: typically takes hours, and sometimes

days (e.g., multislice reconstruction), to complete one
ptychography reconstruction.

�12

fluorescence
detector

transmission
detector

diffraction
detector

Yan et al., Nano Futures 2, 011001 (2018)

NSLS-II PTYCHOGRAPHY SOFTWARE - CURRENT STATUS

‣ Fully Python-based (numpy + scipy + …) software stack
‣ ➡ for easy integration with NSLS-II control, data acquisition & analysis

environment (databroker, bluesky, ophyd, etc)
‣ CPU version: mpi4py + numpy
‣ GPU version: mpi4py + cupy + numba
‣ Computationally intensive functions rewritten in CUDA C and/or Numba
‣ Graphical user interface (GUI) provided
‣ Already deployed in production at HXN & CSX beamlines

�13

USING CUPY WITH NUMBA
▸ Use CuPy to create and manage GPU arrays

▸ Use numba to JIT compile CUDA kernels - no need to write raw CUDA C kernels

�14

@cuda.jit()
def accumulate_obj(prb_norm_d, obj_upd_d, prb_sqr_d, prb_conj_d, product_d,
point_info_l, start, batch):
 x, y, z = cuda.grid(3)
 x_max = int32(product_d.shape[-2])
 y_max = int32(product_d.shape[-1])
 if x < x_max and y < y_max and z < batch:
 x_start = point_info_l[start+z, 0]
 y_start = point_info_l[start+z, 2]
 temp = prb_conj_d[x, y] * product_d[start+z, 0, 0, x, y]
 cuda.atomic.add(prb_norm_d, (x_start+x, y_start+y), prb_sqr_d[x, y])
 cuda.atomic.add(obj_upd_d.real, (x_start+x, y_start+y), temp.real)
 cuda.atomic.add(obj_upd_d.imag, (x_start+x, y_start+y), temp.imag)

RESULTS: WEAK SCALING* �15

pure CuPy implementation CuPy arrays + Numba kernels

Pure CuPy is suitable for quick prototyping
performance is reasonable but still much slower than CUDA/numba

* tested on single DGX-2 with single precision + no mode + CuPy v6.1.0 + Open MPI 4.0.1 + NCCL v2.4.2-1
* Test data size: 5000 images per GPU (each image 200x200 pixels)

3X
improvement

RESULTS: WEAK SCALING �16

CuPy arrays + CUDA kernels CuPy arrays + Numba kernels

CuPy + Numba is enough for further performance boost
(~50% slower than CUDA C)

* tested on single DGX-2 with single precision + 5 modes + CuPy v6.1.0 + Open MPI 4.0.1 + NCCL v2.4.2-1
* Test data size: 5000 images per GPU (each image 200x200 pixels)

RESULTS: GALLERY �17

91.59%

showcase: gold nano-crystal with multi-mode

obj. phase5.42% 1.56% 1.03% <1%

Serial CPU code: 8.8 hr 4 V100 GPUs: 25.69s
>1000x

speedup!

Test machine: xf03id-srv5@HXN, Intel Xeon CPU E5-2630 v4
@2.20GHz, 256GB RAM, 4 NVIDIA Tesla V100 GPUs. 50
iterations used.

GRAPHICAL USER INTERFACE �18

★ PyQt5
★ Customized event handler
★ In-situ processing of raw data
★ Efficient realtime monitor
★ Clean separation of UI logic,

implementation & computation

HPC for LHC: Accelerating ATLAS Fast Calorimeter
Simulations on GPUs

Work supported by DOE HEP via HEP Center for Computational Excellence (CCE)

 19

Zhihua Dong
BNL

Meifeng Lin
BNL

Kwangmin Yu
BNL

Heather Gray
LBNL

Tadej Novak
Jozef Stefan Institute

Ahmed Hasib
U. of Edinburgh

Charles Leggett
LBNL

Doug Benjamin
ANL

HL-LHC: SOFTWARE AND COMPUTE CHALLENGES
▸ Upgrade planned for High-Luminosity (HL) LHC in

2026

▸ ~10x luminosity of the original LHC design value

▸ ~5x increase in event size

▸ ~10x increase in event rate

▸ Currently none of ATLAS production software uses
compute accelerators.

▸ “Business as usual” may not be able to meet the
compute demands of HL-LHC.

▸ Need to be able to utilize HPC systems as well as
traditional HTC/cloud

▸ Current and future HPC systems increasingly feature
(different kinds of) compute accelerators

▸ Portability across different architectures is essential!

�20

www.top500.org

Upcoming US exascale systems: Auroa (ALCF) and Frontier (OLCF)

50x data

http://www.top500.org

ATLAS FAST CALORIMETER SIMULATION

▸ Calorimeter simulation measures the energy
depositions of O(1000) particles after each
collision.

▸ Full detailed simulation uses Geant4, which is
very slow

▸ Fast calorimeter simulation uses parametrization
of the calorimeter: less accurate but much faster
than Geant4 [T. Yamanaka (ATLAS) 2011]

▸ FastCaloSim (FCS): a relatively self-contained
code for fast ATLAS calorimeter simulation

▸ Good candidate for proof-of-concept GPU/
portability studies

�21

Credit: ATLAS

PERFORMANCE PROFILING �22

➢ TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except I/O (~30%).

➢ TFCSLateralShapeParametrizationHitChain::simulate() The
running time scales with the number of events.

➢ TFCSLateralShapeParametrizationHitChain::simulate() is our
target to parallelize/port to GPUs.

I/O routines
Timing for 1000 events

GPU PORTING
▸ Initial strategy: CUDA

▸ to identify feasibility and challenges with GPU porting

▸ Data structure modification from CPU to GPU:

▸ Implemented new GPU CaloGeomory structure and supporting Classes

▸ Simpler, no ROOT Dependence

▸ CaloGeometry data can be loaded once and be reused: ~25MB

▸ Multi-stage CUDA kernels to generate histograms

▸ Blockwise atomic update with shared memory

▸ Followed by reduction across all blocks

▸ To get # of hits in the calo cells

▸ only ~200 cells get hit out of 20,000 cells - trial run to narrow down the hit cells

▸ Reduces memory requirement, and load imbalance

�23

CPU VS GPU PERFORMANCE COMPARISON

▸ Validation against GEANT4 most time consuming
(~50K hits)

▸ CPU: “embarrassingly parallel” - different processes
simulate different events

▸ GPU: Use CUDA-MPS to share 2 P100 GPUs on BNL
Institutional Cluster*

▸ ~5X gain with 50K hits compared to CPU only runs
(32 parallel processes).

▸ Actual production runs have fewer hits - less compute
▸ Less performance gain: 2-3X vs. CPU

�24

~50,000 hits

* CPU: Intel Xeon “Broadwell” 32 cores per node
* GPU: 2 NVIDIA P100 per node

#MPI
Processes Particle Energy

Min
Eta

CPU (s)
/10K event

/ process

GPU (s)
 / 10K event

/ process
1 Electron 65536 2.2 18.8 6.0

32 Electron 65536 2.2 24.0 7.1

~5,000 hits

Validation

Simulations

EXASCALE COMPUTING

�25

THE RACE TO EXASCALE
▸ China, EU, Japan and US are all developing exascale supercomputers.

�26

DIVERSE EXASCALE ARCHITECTURES IN US ALONE �27

6

Relevant US DOE Pre-Exascale and Exascale Systems for ECP

Doug Kothe @ 2019 NSF Blueprint workshop

TWO MAJOR PARALLEL PROCESSING PARADIGMS (SINGLE-NODE)

▸ SIMD - Single Instruction Multiple Data

▸ Intel Xeon Phi (AVX512): Cori/NERSC, Theta/ALCF

▸ Intel Xeon “Skylake” (AVX512): Frontera/TACC

▸ ARM SVE (Scalable Vector Extensions), supporting 128-bit to 2048-bit
vector units: Post-K/Japan, new system at SBU

▸ SIMT - Single Instruction Multiple Threads

▸ GPGPUs - NVIDIA, AMD, Intel

▸ Can we have the same data format/layout/programming model for both?

�28

New!

New!

PORTABILITY CONSIDERATIONS

▸ Performance Portability

▸ How much tradeoff do you want to make between performance and portability?

▸ Is it possible to design your software to be portable and at the same time reasonably performant?

▸ Programming Models

▸ What programming models do you want to use c.f. performance portability?

▸ OpenMP, OpenACC, OpenCL, CUDA, HIP, SyCL, OneAPI, Kokkos, etc.

▸ Programming Languages

▸ Parallelism has increasing become part of the language itself, e.g. pSTL in C++.

▸ Data Layout

▸ Is there a “one-size-fits-all” data layout for the diverse architectures?

�29

Given the diversity of current and upcoming HPC architectures, we may need to
design our software with following considerations:

CSI ECP PROJECTS
▸ Application Development

▸ Lattice QCD - algorithms, performance portability, workflows

▸ NWChemEX - newly-designed C++-based library (from Fortran-based NWChem)

▸ Software Technologies

▸ SOLLVE (Scaling OpenMP LLVM Compiler towards Exascale) - OpenMP standard,
LLVM compiler infrastructure

▸ Codesign Centers

▸ CODAR - Center of Data Analysis and Reduction

▸ ExaLearn - Machine Learning software for Exascale applications

�30

SIDE NOTES

�31

NEW DATA CENTER CONSTRUCTION UNDER WAY

▸ Repurposed NSLS Light Source building

▸ “Tier III” Class data center*

▸ Redundant infrastructure

▸ Concurrently maintainable

▸ Completely self sufficient in emergencies

▸ New data center occupancy timeline

▸ ATLAS areas ready before CY2021 - to
coincide with LHC Run 3 start

▸ Other areas become ready for occupancy
throughout CY2021

�32

* using the “Tier” classification defined by the Uptime Institute Slide Credit: Shigeki Masawa, Imran Latif, Alexandr Zaytsev

https://uptimeinstitute.com/tiers

TRAINING EVENTS
▸ CSI regularly holds hands-on training events

▸ Hands-on training events (hackathons) give scientists
access to expert guidance on modern HPC architectures
and programming tools.

▸ Great way to jumpstart incorporating a new programming
tool/model in your code

▸Planned this year:

▸GPU Hackathon, August 17-21, 2020

▸OpenMP Hackathon, dates TBD

▸ML/AI Tutorials, dates TBD

�33

