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COMPUTATIONAL SCIENCE INITIATIVE

» Established in 2015

» An umbrella to bring together computing and data
expertise across BNL

» Aims to foster interdisciplinary collaborations in domain
sciences, computer science, applied math and data
analytics.

» Focus areas:

» High performance and novel computing, including
gquantum computing

» Data analytics at scale, incl. scalable machine learning,
visual analytics, workflow, provenance, etc.

State-of-the-art computing and storage facility

» 5 departments, ~50 staff members and growing!
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MACHINE LEARNING AND A.l. GROUP

» Group Lead: Shinjae Yoo
» Specific Focus:

» Real-Time Analysis of Experimental Data (NSLS II,
CFN, Cryo-EM, Solar Power)

» Causal Analysis (Biology, Power Grid)
» Natural Language Processing for Science
» Robustness, Explainability, Reproducibility

» Quantum Machine Learning
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NEW QUANTUM COMPUTING GROUP

» Group Lead: Layla Hormozi
» Specific Focus:
» Quantum Networking

» Connecting Quantum Networking and Quantum
Computing

» Optimized Quantum Algorithm Development
for Nuclear, High Energy, and Condensed
Matter Physics

» Quantum Error Characterization and Correction
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HIGH PERFORMANCE COMPUTING GROUP

» Group Lead: Meifeng Lin

» The High Performance Computing Group at CSl help the scientists get
their codes to run on modern computing architectures

» Research domains range from materials science, quantum chemistry,
high energy and nuclear physics, climate science, etc.

» Making use of state-of-the-art software tools and hardware
architectures:

» Performance profiling, analysis and modeling
» MPI, OpenMP, OpenACC(C, ...
» CUDA, HIP, SyCL, ...

» Performance portable frameworks
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HPC PROJECT RIGHLIGRTS



9

HPC tor NSLS II: X-ray Ptychographical Image Reconstruction
via Distributed & GPU Computing

Leo Fang /Zhihua Dong  Xiaojing Huang Hanfei Yan Sungsoo Ha Wei Xu Yong Chu  Stuart Campbell Meiteng Lin
CSl CSl NSLS-II NSLS-II CSl CSl NSLS-II NSLS-I CSl
References:

1. Dongetal., NYSDS 2018 (arXiv:1808.1037/5)
2. Fangetal., "Accelerated Computing for X-ray Ptychography at NSLS-II",

book chapter in “Handbook on Big Data and Machine Learning in the
Physical Sciences”
3. Fangetal., in preparation

Work supported by BNL LDRD #17-029, and in part by DOE BES



REAL-TIME ANALYSIS AND STEERING OF EXPERIMENTS 10

» Facility users at CFN and NSLS Il typically have limited time allocated.
» Getting the right setup of the experiments often takes trial-and-error.
» Brighter light sources mean faster data rates and larger data volumes.

» Analyzing data could take a long time

Back-end HPC

» Affects the number of experiments users can do

» Need to improve in-situ data analysis tools

» Speed - HPC

» Usability - intuitive GUI
Image Credit: Wei Xu

» Maintainability - high-level programming abstractions
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Building 741

NSLS Il - National Synchrotron Light
Source Il (there was an NSLS at BNL -

now CSI)

Building 740 <
(Entry Lobby) D A ; M

State-of-the-art, medium-energy (3-

billion-electron-volt, or GeV) electron e | - | o
storage ring that produces x-rays up to | o
10,000 times brighter than the NSLS

National Synchrotron Light Source II

First light: 2014

Beamlines by Structural Biology
L PrOgraM oy Imaging & Microscopy
o o o . - @ Soft X-Ray Scattering & Spectroscopy

28 beam lines in operation; 1 under Gt

14D @ Diffraction & In Situ Scattering
d eve I O p m e nt e @ Hard X-Ray Spectroscopy

Future Beamlines
13-D
12-BM
(CMS) I
(CHX) CEEIY
10-BM T
WS) 9-Bl\/|
Building 744 71D © Building 743
(LOB 4) (LOB 3)
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DATA AND COMPUTATION CHALLENGES 12

» Ptychography reconstruction at HXN
» Typically O(10,000) - O(100,000) scan images
» ~200x200 pixels (in floating points) per image

fluorescence
Il detector

2 3", =
diffraction YA

» Data size of input images: O(1GB) to O(10 GB) detector

» Memory requirements for the DM algorithm (including
temporary buffers):

» Single-mode: >4x of input size

» Multi-mode: >10x of input size transmission

detector

» Need multiple GPUs for sufficient memory
» Ditterence map iterative algorithm: O(100) iterations

» Serial Python code: typically takes hours, and sometimes
days (e.g., multislice reconstruction), to complete one

ptychog raphy reconstruction Yan et al., Nano Futures 2, 011001 (2018)
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NSLS-II PTYCHOGRAPHY SOFTWARE - CURRENT STATUS 13

» Fully Python-based (numpy + scipy + ...) software stack

» = for easy integration with NSLS-Il control, data acquisition & analysis

environment (databroker, bluesky, ophyd, etc)
» CPU version: mpi4py + numpy
» GPU version: mpid4py + cupy + numba
» Computationally intensive functions rewritten in CUDA C and/or Numba
» Graphical user interface (GUI) provided
» Already deployed in production at HXN & CSX beamlines



Use CuPy to create and manage GPU arrays

Use numba to JIT compile CUDA kernels - no need to write raw CUDA C kernels

Qcuda.jit()
def accumulate obj(prb norm d, obj upd d, prb sqr d, prb conj d, product d,
point info 1, start, batch):

X, V, 2 = cuda.grid(3)

X max = 1nt32(product d.shape[-2])

y max int32 (product d.shape[-1])

1f x < x max and y < y max and z < batch:
X start = point info l[start+z, 0]
y start = point info l[start+z, 2]
temp = prb conj d[x, y] * product d[start+z, 0, 0, x, y]
cuda.atomic.add(prb norm d, (x start+x, y start+y), prb sqr d[x, v])
cuda.atomic.add(obj upd d.real, (x start+x, y start+y), temp.real)
cuda.atomic.add(obj upd d.imag, (x start+x, y start+y), temp.imag)

3 cur 2Numba
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pure CuPy implementation CuPy arrays + Numba kernels

B averaging

Pure CuPy is suitable for quick prototyping
performance is reasonable but still much slower than CUDA/numba

/p‘yu * tested on single DGX-2 with single precision + no mode + CuPy v6.1.0 + Open MP| 4.0.1 + NCCL v2.4.2-1
BROOKHEUVEN * Test data size: 5000 images per GPU (each image 200x200 pixels)
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CuPy arrays + CUDA kernels CuPy arrays + Numba kernels

Bl averaging
B error

B prb ob

CuPy + Numlba is enough for further performance boost
(~50% slower than CUDA C)

* tested on single DGX-2 with single precision + 5 modes + CuPy v6.1.0 + Open MPI 4.0.1 + NCCL v2.4.2-1
Bnqmmﬂ,m * Test data size: 5000 images per GPU (each image 200x200 pixels)
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RESULTS: GALLERY

17

showcase: gold nano-crystal with multi-mode

91.99%

5.42%

vlﬂ. -

Serial CPU code: 8.8 hr ——————

1.56%

1.03%

Test machine: xfO3id-srvb@HXN, Intel Xeon CPU E5-2630 v4
@2.20GHz, 256GB RAM, 4 NVIDIA Tesla V100 GPUs. 50

iterations used.

<1%

obj. phase

4 \/100 GPUs: 25.69s



GRAPHICAL USER INTERFACE

o O % NSLS-Il HXN Pytchography Recon. Monitor

% NSLS-Il HXN Pytchography
File object phase w | | probe amplitude

Data _— -
Scan number 34784 working directory | |/home/leofang/test/ptycho_gui2/blahblahblah/ 1
Load from h5 detector Load Frame # |0 || View data frame |
Experimental parameters - :
X-ray energy (keV) 12.0000000000 Detector distance (m) : | f ¥ |
X array size 128 Y array size | |
X step size (nm) 0.0200 Y step size (nm) : |
¥ scan range (um) 1.1800 Y scan range (um) . e
Scan type: Numbers of points - 3

Reconstruction parameters | Advanced options = Batch mode
RESET PAN/ZOOM, o RO

i -

Num. of iteration |50 - Algorithm DM : ' . x0 163 |2/ y0 143 |2 w 128 i.% 128 |3

L 4
Tools L 4

Save filename t1 o
Bad pixels Brightest Qﬁtliers v show bad pixels Correct

Probe initialization:  Estimate from data Load probe | scan_34784.prb.npy S * Background remcver

threshold ‘mm
Object initialization: Random start v | Load object save to hS Periodic artlﬁatf remover param | 0.00

“

Modes v/  Num. of probe mode Num. of object mode | . 66%

Multi-slice MNum. of slices Slice spacing (um)

il

Amplitude range: min |0.500 |5 max | 1.000 Phase range: min |-1.000 |5 | max |0.010

PyQt5
e oP e Customized event handler
0.01114843]diff_chi_= 0.03263471103254231_ r_Si:u proceSSing Of raW data

[INFO] DM 32 object_chi = [0.02559802] probe_chi = [0.00463465 0.01623956 0.01463355 0.01263826

GPU: v | O 2 | 3  or MPI machine file stop

pe— g []
—

Iclent realtime monitor
Clean separation of Ul logic,
implementation & computation

0.01079232] diff chi = 0.03360906691607007
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HPC for LHC: Accelerating ATLAS Fast Calorimeter
Simulations on GPUSs

Zhihua Dong Tadej Novak Kwangmin Yu Ahmed Hasib  Charles Leggett Doug Benjamin  Heather Gray Meifeng Lin
BNL Jozef Stefan Institute BNL U. of Edinburgh LBNL ANL LBNL BNL

M
L

Work supported by DOE HEP via HEP Center tfor Computational Excellence (CCE)
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HL-LHC: SOFTWARE AND COMPUTE CHALLENGES 2

» Upgrade planned for High-Luminosity (HL) LHC in

2026
~10x luminosity of the original LHC design value 500 ,;,%’JHE -] %ISCGROUP
The List. -

~5X Increase in event size 50x data —
Summit IBM POWERS (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband  DOE/SC/ORNL

~10x increase in event rate Sierra IBM POWERS (22C, 31GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband ~ DOE/NNSA/LLNL
Sunway TaihuLight Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect NSCC in Wuxi

) Current | y hone Of ATLAS Pro d uction s Oﬁwa re uses Tianhe-2A (Milkyway-2A) Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000 NSCC Guangzhou

com p ute acce | erators. Frontera Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR TACC/U of Texas
www.top 500.org

» “Business as usual” may not be able to meet the
compute demands of HL-LHC.

L)

» Need to be able to utilize HPC systems as well as
traditional HTC/cloud

OA K RID u13

FHR IR

» Current and future HPC systems increasingly feature
(different kinds of) compute accelerators

Upcoming US exascale systems: Auroa (ALCF) and Frontier (OLCF)
» Portability across different architectures is essential!

BROD.KI-I/B(GEN
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http://www.top500.org

ATLAS FAST CALORIMETER SIMULATION

21

4

Calorimeter simulation measures the energy
depositions of O(1000) particles after each
collision.

Full detailed simulation uses Geant4, which is
very slow

Fast calorimeter simulation uses parametrization
of the calorimeter: less accurate but much ftaster
than Geant4 [T. Yamanaka (ATLAS) 2011]

FastCaloSim (FCS): a relatively self-contained
code tor tast ATLAS calorimeter simulation

» Good candidate for proof-of-concept GPU/
portability studies

BRODKIﬁ\"EN
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> TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except

> TFCSLateralShapeParametrizationHitChain::simulate() The
running time scales with the number of events.

1/0 routines

TFCSLateralShapeParametrizationHit
Chain::simulate(TFCSSimulationState...

il 35.59 %

Timing for 1000 events

144 692 ... 127 326 ...

- TFCSValidationHitSpy::simulate_hit( TFCSHitCellMappingWiggle::simulate_hit(

TFCSLateralShapeParametrizationHitB... TFCSLateralShapeParametrizationHitBas...

F116.13 % [19.56 %

TFCSHitCellMapping::simulate_hit(
TFCSLateralShapeParametrizationHitBa...

L_15.82%

BROIIKI'I@EN
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Initial strategy: CUDA
to identify feasibility and challenges with GPU porting
Data structure modification from CPU to GPU:
Implemented new GPU CaloGeomory structure and supporting Classes
Simpler, no ROOT Dependence
CaloGeometry data can be loaded once and be reused: ~25MB
Multi-stage CUDA kernels to generate histograms
Blockwise atomic update with shared memory
Followed by reduction across all blocks
To get # of hits in the calo cells
only ~200 cells get hit out of 20,000 cells - trial run to narrow down the hit cells

Reduces memory requirement, and load imbalance

BROO.KI'I/MI7IEN
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Validation against GEANT4 most time consuming Validation tvent loop time (s)  ~90,000 hits
(~50K hitS) @ 10kEvent-2GPU @ ChainGPU CPU only 10K Event

III

CPU: “embarrassingly paralle
simulate different events

- different processes

200.0

GPU: Use CUDA-MPS to share 2 P100 GPUs on BNL w0 g2g 901 | 916 27 961 966 1018

. . 7=y ———10 " S - SE——— 0
|nStItut|0na| Cluster* 13%7=10%2 1%% 1%%9 15% 159 1700 206

0.0 a—e——0—0—0— 00— 90
5 10 15 20 25 30

~
w

S
Q
=
b=

Q
@)
O
+
-
Q
>
o
X
o
-

~5X gain with 50K hits compared to CPU only runs NumProc
(32 parallel processes).

Actual production runs have fewer hits - less compute ~5,000 hits

Less performance gain: 2-3X vs. CPU CPU(s)  GPU(s)
#MPI Min| /10K event / 10K event

Processes| Particle Energy Eta| /process /process

1| Electron| 65536| 2.2 18.8 6.0

32| Electron, 65536 2.2 24.0 7.1
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EXASCALE COMPUTING



THE RACE TO EXASCALE

» China, EU, Japan and US are all developing exascale supercomputers.

11Jan 2018 | News 28 Jun 2018 | 18:00 GM1
EU launches €1B project to build fastest supercomputer in the Japan Tests Silicon for Exascale
world by 2023 Computing in 2021

Commission lays out plan to catch China and US in the competition to create a ‘super-supercomputer’
By Eanna Kelly Fujitsu and RIKEN have (:.l'f”’[‘l'[f'-;’;i the SPARC
processor 1n favor of an Arm design chip scaled up for

supercomputer periormance

By John Boyd

i two Arm8A-SVE water-

Nearly complete, the 200-petaflop Summit will be a prelude to A21, the first U.S. exaflop computer. LYNN

China invests 3 billion yuan to build world’s

Racing to match China's growing computer power, U.S. first exascale supercomputer by 2020
outlines design for exascale computer

By Robert F. Service | Feb. 7,2018,11:00 AM c NICKY LUNG
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Relevant US DOE Pre-Exascale and Exascale Systems for ECP

Future Exascale Systems
E— _ 2021-2023

) bt | e ORNL
! | Cray/Intel iES IBM/NVIDIA P ERLMUTTER ﬁ(%f;\MD/ Cray/AMD

N !’ o1 A ANL
: ) | Intel/Cray Intel/Cray
! /

/4| LANL/SNL N | LANUSNL RESIHAT:
CROSSROADS B3 :
Cray/Intel IBM/NVIDIA OSSR 0ADS - e

—
“—

_\\ EXASCALE
o b P SEEE




TWO MAJOR PARALLEL PROCESSING PARADIGMS (SINGLE-NODE)

» SIMD - Single Instruction Multiple Data
» Intel Xeon Phi (AVX512): Cori/NERSC, Theta/ALCF

» Intel Xeon “Skylake"” (AVX512): Frontera/TACC

’ (Scalable Vector Extensions), supporting 128-bit to 2048-bit
vector units: Post-K/Japan, new system at SBU

» SIMT - Single Instruction Multiple Threads

» GPGPUs - NVIDIA, '

» Can we have the same data format/layout/programming model for both?

BROﬂKIﬁ’"EN
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PORTABILITY CONSIDERATIONS 29

» Performance Portability

» How much tradeoff do you want to make between performance and portability?

» Is it possible to design your software to be portable and at the same time reasonably performant?
» Programming Models

» What programming models do you want to use c.f. performance portability?

» OpenMP, OpenACC, OpenCL, CUDA, HIP, SyCL, OneAPI, Kokkos, etc.
» Programming Languages

» Parallelism has increasing become part of the language itself, e.g. pSTL in C++.
» Data Layout

» Is there a “one-size-fits-all” data layout for the diverse architectures?

BROI].KI-I/B(’"IEN
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Application Development

Lattice QCD - algorithms, performance portability, workflows

NWChemEX - newly-designed C++-based library (from Fortran-based NWChem)
Software Technologies

SOLLVE (Scaling OpenMP LLVM Compiler towards Exascale) - OpenMP standard,
LLVM compiler infrastructure

Codesign Centers

CODAR - Center of Data Analysis and Reduction

ExalLearn - Machine Learning software for Exascale applications

BR(IIIKI@EN
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SIDE NOTES



NEW DATA CENTER CONSTRUCTION UNDER WAY 3

» Repurposed NSLS Light Source building

»  "Tier llI" Class data center*

» Redundant infrastructure

» Concurrently maintainable

» Completely self sufficient in emergencies
» New data center occupancy timeline

» ATLAS areas ready before CY2021 - to
coincide with LHC Run 3 start

» Other areas become ready for occupancy
throughout CY2021

Nﬁw’@g‘!ﬁ'ﬁy * using the “Tier” classification defined by the Uptime Institute Slide Credit: Shigeki Masawa, Imran Latif, Alexandr Zaytsev


https://uptimeinstitute.com/tiers

TRAINING EVENTS 33

PAM 2018

Performance Analysis and Modeling Workshop

KNL Hackathon 2018 | 'I T

» CSl regularly holds hands-on training events

access to expert guidance on modern HPC architectures GPU Hackathon 2018
. All GPU programming paradigms are welcome
and programming tools.

OpenMP Brookathon 2019

} G re at Way to j u m pSta rt i n CO rp O rati n g a n eW p ro g ra m m i n g We enco:r;fteams from thﬁEnergy Physics community and the US Exas;Computing Project to partiipate.
' | 4 L
tool/model in your code LU H ST [9 .

All GPU programmi igms are welcome 6

ooooooooooooooooooooooo ry
September 23-27, 2019

» Planned this year:

» OpenMP Hackathon, dates TBD
» ML/AI Tutorials, dates TBD
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