Balance function as a unique probe of the quark gluon plasma: experimental overview and outlook

Jinjin(Au-Au) Pan

BNL Nuclear Physics Seminar| 02/25/2020

Just off shift from STAR control room this morning

Status of STAR:

- 2 days ago we successfully reached the goal of 11.5 GeV Au-Au (230M good MB events) data taking during my shift
- right now STAR is taking 9.2 GeV Au-Au data

Why carry out relativistic heavy ion collisions?

0
Net Baryon Density

Discovery of QGP:

RHIC 2005 Au-Au
LHC 2010 Pb-Pb

Quark Gluon Plasma (QGP)

- hot and dense QCD matter
- strongly coupled perfect liquid
- deconfined quarks
- early universe

Open questions:

- QCD phase diagram
- critical point
- light and strange quark production time
- hadronization
- transport

Balance Function - distribution of balancing charges

$$
B\left(\vec{p}_{1}, \vec{p}_{1}\right) \quad \text { Bass, Danielewič, Pratt PRL } 85,2689 \text { (2000) }
$$

measure BF of final state identified hadron pairs
\pm - General conserved charges:

- e: electric charge
- S : strangeness
- B: baryon number

Balancing charge separation in Δy

Balancing charge separation

Voloshin PLB 632 (2006) 490-494

Larger radial flow towards central collisions leads to smaller separation of balancing pairs in Δy

BF of unidentified hadron pairs $h \boldsymbol{h}$ and $\pi \pi$

$0.1<p<2.0 \mathrm{GeV} / \boldsymbol{c}$

$0.1<p_{T}, p<0.7 \mathrm{GeV} / \mathrm{c}$

Narrowing of $\boldsymbol{B}^{\boldsymbol{h} \boldsymbol{h}}$ and $\boldsymbol{B}^{\boldsymbol{\pi} \boldsymbol{\pi}}$ towards central Au-Au collisions
-> larger radial flow towards central collisions leads to smaller separation of balancing pairs in $\Delta \eta \& \Delta y$
-> later hadronization towards central collisions leads to narrower BF

BF of identified hadron pairs $\pi \pi$ and $K K$

$0.2<p_{T}<0.6 \mathrm{GeV} / \mathrm{c}$
$B^{\pi \pi}(\Delta y)$ narrow towards central collisions, while $B^{K K}(\Delta y)$ no centrality dependence.
-> larger radial flow towards central collisions leads to smaller separation of balancing pairs in Δy for $\pi \pi$ and $K K$. $->\langle\Delta y\rangle$ for $\boldsymbol{K} \boldsymbol{K}$ is smaller than $\boldsymbol{\pi} \boldsymbol{\pi}$ due to ϕ decay.
-> no late hadronization for $K K$?

Two-wave Quark Production

Pratt PRL. 108, 212301 (2012)
Generalized BF (between different particle species)
-> understand balancing between quark species
-> access to light and strange quark production time

$\pi \pi$: larger $2^{\text {nd }}$ wave up/down quark production -> smaller $\langle\Delta y\rangle$-> narrow towards central collisions
$K K$: dominant $1^{\text {st }}$ wave strange quark production -> same $\langle\Delta y\rangle$-> no centrality dependence

Baryon number BF \& Net-baryon fluctuation

Pruneau, PRC 100, 034905 (2019)

STAR, arXiv:2001.02852 submitted to Nature Physics

BF Integral

- hadron species pairing probability (never measured before)
- interplay of pair production process, acceptance, and BF width

$$
1-\frac{C_{2}\left(\Delta N_{p}\right)}{C_{2}^{\text {Skellam }}\left(\Delta N_{p}\right)}=I_{B F}(\Omega)
$$

high energy $\mathrm{A}-\mathrm{A}$ collisions in the limit $\left\langle N_{p}\right\rangle=\left\langle N_{\bar{p}}\right\rangle$

Two-particle Number Correlation Function

2-Particle Cumulant $\quad C_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)=\rho_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)-\rho_{1}^{\alpha}\left(\vec{p}^{\alpha}\right) \cdot \rho_{1}^{\beta}\left(\vec{p}^{\beta}\right)$

Measurement: M - Measured
$C_{2, M}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right) \approx \varepsilon_{1}^{\alpha}\left(\vec{p}^{\alpha}\right) \cdot \varepsilon_{1}^{\beta}\left(\vec{p}^{\beta}\right) \cdot C_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)$
Require separate efficiency estimation for single particles
$\alpha, \beta-\boldsymbol{h}, \boldsymbol{\pi}, \boldsymbol{K}, \boldsymbol{p}, \Lambda$ and $\Xi .$.
α - reference particle
β - associate particle
ρ_{1}, ρ_{2} - single particle \& pair number density per event
assuming efficiency factorizes
$\varepsilon_{2}^{\alpha}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right) \approx \varepsilon_{1}^{\alpha}\left(\vec{p}^{\alpha}\right) \cdot \varepsilon_{1}^{\beta}\left(\vec{p}^{\beta}\right)$

Normalized 2-Particle Cumulant

$$
R_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)=\frac{C_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha}\left(\vec{p}^{\alpha}\right) \cdot \rho_{1}^{\beta}\left(\vec{p}^{\beta}\right)}=\frac{\rho_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha}\left(\vec{p}^{\alpha}\right) \cdot \rho_{1}^{\beta}\left(\vec{p}^{\beta}\right)}-1
$$

Efficiencies cancel in the ratio -> robust observable

Acceptance correction

Ravan et al., PRC 89, 024906 (2014)
weight: $w_{ \pm}\left(y, \varphi, V_{z}, p_{T}\right)=\frac{\rho^{ \pm} \text {vg }\left(p_{T}\right)}{\rho^{ \pm}\left(y, \varphi, V_{Z}, p_{T}\right)}$
small V_{z} bins

Balance Function (BF) Definition

Associated particle distribution (per trigger yield)

$$
A^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)=\frac{\rho_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha}\left(\vec{p}^{\alpha}\right)}-\rho_{1}^{\beta}\left(\vec{p}^{\beta}\right)=\rho_{1}^{\beta}\left(\vec{p}^{\beta}\right) \cdot R_{2}^{\alpha \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)
$$

BF of positive reference particle α^{+}

BF of negative reference particle $\boldsymbol{\alpha}^{-}$

$$
\begin{aligned}
& B^{\alpha^{+} \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)=A^{\alpha^{+} \beta^{-}}-A^{\alpha^{+} \beta^{+}}=\frac{\rho_{2}^{\alpha^{+} \beta^{-}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha^{+}}\left(\vec{p}^{\alpha}\right)}-\rho_{1}^{\beta^{-}}\left(\vec{p}^{\beta}\right)-\frac{\rho_{2}^{\alpha^{+} \beta^{+}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha^{+}}\left(\vec{p}^{\alpha}\right)}+\rho_{1}^{\beta^{+}}\left(\vec{p}^{\beta}\right) \\
& B^{\alpha^{-} \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)=A^{\alpha^{-} \beta^{+}}-A^{\alpha^{-} \beta^{-}}=\frac{\rho_{2}^{\alpha^{-}{\beta^{+}}^{2}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha^{-}}\left(\vec{p}^{\alpha}\right)}-\rho_{1}^{\beta^{+}}\left(\vec{p}^{\beta}\right)-\frac{\rho_{2}^{\alpha^{-} \beta^{-}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)}{\rho_{1}^{\alpha^{-}}\left(\vec{p}^{\alpha}\right)}+\rho_{1}^{\beta^{-}}\left(\vec{p}^{\beta}\right)
\end{aligned}
$$

Balance function $\quad \boldsymbol{B}^{\alpha \beta}\left(\overrightarrow{\boldsymbol{p}}^{\alpha}, \overrightarrow{\boldsymbol{p}}^{\beta}\right)=\frac{1}{2}\left[B^{\alpha^{+} \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)+B^{\alpha^{-} \beta}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)\right]$

$$
=\frac{1}{2}\left[\rho_{1}^{\beta^{-}}\left(\vec{p}^{\beta}\right) \cdot R_{2}^{\alpha^{+} \beta^{-}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)-\rho_{1}^{\beta^{+}}\left(\vec{p}^{\beta}\right) \cdot R_{2}^{\alpha^{+} \beta^{+}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)+\rho_{1}^{\beta^{+}}\left(\vec{p}^{\beta}\right) \cdot R_{2}^{\alpha^{-} \beta^{+}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)-\rho_{1}^{\beta^{-}}\left(\vec{p}^{\beta}\right) \cdot R_{2}^{\alpha^{-} \beta^{-}}\left(\vec{p}^{\alpha}, \vec{p}^{\beta}\right)\right]
$$

Balance Function Measurement

$$
\begin{aligned}
& B^{\alpha \beta}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right) \\
& =\frac{1}{2}\left[\rho_{1}^{\beta^{-}}\left(y^{\beta}, \varphi^{\beta}\right) \cdot R_{2}^{\alpha^{+} \beta^{-}}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right)-\rho_{1}^{\beta^{+}}\left(y^{\beta}, \varphi^{\beta}\right) \cdot R_{2}^{\alpha^{+} \beta^{+}}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right)\right. \\
& \left.+\rho_{1}^{\beta^{+}}\left(y^{\beta}, \varphi^{\beta}\right) \cdot R_{2}^{\alpha^{-} \beta^{+}}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right)-\rho_{1}^{\beta^{-}}\left(y^{\beta}, \varphi^{\beta}\right) \cdot R_{2}^{\alpha^{-} \beta^{-}}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right)\right]
\end{aligned}
$$

- measure $R_{2}^{\alpha \beta}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right)$ for interested p_{T} range

$$
\begin{aligned}
& 0.2 \leq p_{T}^{\pi, K} \leq 2.0 \mathrm{GeV} / \mathrm{c} \\
& 0.5 \leq p_{T}^{p} \leq 2.5 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

- $\rho_{1}^{\beta}\left(y^{\beta}, \varphi^{\beta}\right)$ (assuming constant for mid-rapidity) calculated from previous p_{T} spectra measurements

$$
B^{\alpha \beta}(\Delta y, \Delta \varphi)=\int B^{\alpha \beta}\left(y^{\alpha}, \varphi^{\alpha}, y^{\beta}, \varphi^{\beta}\right) d y^{\beta} d \varphi^{\beta}
$$

BF measures charge-dependent (CD) correlations

Remove charge independent effects
Keep effects related to balancing pairs

BF of unidentified hadrons: STAR BES I \& ALICE

- $B^{h h}(\Delta \eta)$ narrow towards central $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions -> larger radial flow in central leads to smaller $\langle\Delta \eta\rangle$ separation $->$ larger $2^{\text {nd }}$ wave up/down quark production in central -> smaller $\langle\Delta \eta\rangle$
- lower energy (7.7 GeV): narrow towards central collisions -> QGP
- oversimplification in correction for acceptance

Low p_{T} :

- $\mathrm{pp}, \mathrm{p}-\mathrm{Pb}$: similar widths at overlapping multiplicities $->$ similar origin in BF
- $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$: different at overlapping multiplicities $->$ different origin

Intermidiate \& high p_{T} :

- narrower \& no multiplicity dependence -> initial hard parton scattering \& subsequent fragmentation
- similar values for all multiplicities over all three systems -> similar dynamics

$R_{2}{ }^{(C D)}$ vs. models - unidentified hadrons

PRC 100, 044903 (2019)
Basu, Gonzalez, JP, et al. arXiv:2001.07167, Submitted to PRC

- models qualitatively reproduce near-side peak, but Not its amplitude and collision centrality evolution.
- broad dip at $(\Delta y, \Delta \varphi)=(0,0)$ in data due to HBT Not reproduced by models -> no HBT afterburner
- models qualitatively reproduce away-side tail in peripheral and its suppression in central collisions -> resonance decays, e.g. ρ^{0}
$\mathbf{R}_{2}{ }^{(C D)}$ vs. models - unidentified hadrons
ALICE

- models Not reproduce magnitude and centrality evolution of longitudinal rms
- EPOS: reproduces a narrowing but widths too narrow by ~30\% -> corona particle dominance since No event-by-event charge conservation in core -> average radial flow imparted to corona >> core
- UrQMD: weak amplitude of near-side peak -> insufficient high-mass resonances
- AMPT: weak amplitude of near-side peak -> incomplete handling of charge conservation

BF of full species matrix $\left(\pi^{ \pm}, K^{ \pm}, p / \bar{p}\right) \times\left(\pi^{ \pm}, K^{ \pm}, p / \bar{p}\right)$

\pm - General conserved charges:

- e: electric charge
- S: strangeness
- B: baryon number

		$B^{\alpha \beta}(\Delta y, \Delta \varphi)$	$h^{ \pm}$	$\pi^{ \pm}$	$K^{ \pm}$
e					
e					
e	S				
e	B				
$\pi^{ \pm}$	\checkmark				
$K^{ \pm}$		$\checkmark \checkmark$	\checkmark	\checkmark	
p / \bar{p}		\checkmark	$\checkmark \checkmark$	\checkmark	

$1^{\text {st } B F}$ measurement of full species matrix of $\left(\pi^{ \pm}, K^{ \pm}, p / \bar{p}\right) \times\left(\pi^{ \pm}, K^{ \pm}, p / \bar{p}\right)$.

1D BF Δy Projections
$0.2 \leq p_{T}^{\pi, K} \leq 2.0 \mathrm{GeV} / \mathrm{c}$
JP PhD dissertation, arXiv:1911.02234 $0.5 \leq p_{T}^{p} \leq 2.5 \mathrm{GeV} / \mathrm{c}$

ALIC

$|\Delta \varphi|<\pi$

Note different scale

$\pi \pi$: clear centrality dependence $\boldsymbol{K} K$: no centrality dependence -> consistent with radial flow and two wave quark production

BF including π :
Clear centrality dependence

BF including K, p :
no / little centrality dependence
-> different production mechanisms for π, K, p
$0.2 \leq p_{T}^{\pi, K} \leq 2.0 \mathrm{GeV} / \mathrm{c}$
$0.5 \leq p_{T}^{p} \leq 2.5 \mathrm{GeV} / \mathrm{c}$

JP PhD dissertation, arXiv:1911.02234 JP (for ALICE), NPA 982 (2019) 315-318 JP et al. (ALICE), PRL + PRC In Preparation

ALICE

$|\Delta y|<1.4 \pi \pi$
$|\Delta \mathrm{y}|<1.0 p p$
$|\Delta y|<1.2$ other pairs

Note different scale

BF including π :
Clear centrality dependence
BF including $\boldsymbol{K}, \boldsymbol{p}$:
no / little centrality dependence
-> different production mechanisms for π, K, p

BF RMS Widths and Integrals $\begin{gathered}0.2 \leq p_{1}^{\pi_{1}} \leq 2.0 .6 e v / c \\ 0.5 \leq p_{T} \leq 2.56 e v / c\end{gathered}$

JP PhD dissertation, arXiv:1911.02234

$B(\Delta y)$ RMS Widths:

- $\boldsymbol{K} \boldsymbol{K} \& p p$ no centrality dependence; $\pi \pi \&$ cross-species pairs narrow towards central collisions
- Similar values for all cross-species pairs.
- Qualitatively consistent with radial flow and two-wave quark production -> detailed modeling required to distinguish them.

STAR PRC 82, 024905 (2010)

Au-Au @ 200 GeV $0.2<p_{\mathrm{T}}<0.6 \mathrm{GeV} / \mathrm{c}$

JP PhD dissertation, arXiv:1911.02234 JP (for ALICE), NPA 982 (2019) 315-318 JP et al. (ALICE), PRL + PRC In Preparation

ALICE

$B(\Delta \varphi)$ RMS Widths:

- Different values for different species pairs
-> radial flow affects pairs of different mass differently.
- Widths for $p p$ is same with $\pi \pi$ due to different Δy range. Other effects?
- All species pairs narrow towards central collision -> qualitatively radial flow > diffusion.
- More detailed information on radial flow profile in context of hadron species pairs.

BF RMS Widths and Integrals
 $0.2 \leq p_{T}^{\pi, K} \leq 2.0 \mathrm{GeV} / \mathrm{c}$
 $0.5 \leq p_{T}^{p} \leq 2.5 \mathrm{GeV} / \mathrm{c}$

ALICE

ALICE, PRC 88, 044910 (2013)

Balance Function Integrals

- $1^{\text {st }}$ measurement of hadron species pairing probability (within acceptance).
- Sum of integrals of $\boldsymbol{\pi}$ triggered, \boldsymbol{K} triggered, \boldsymbol{p} reference BFs ~ 0.65.
- Minimal centrality dependence for most pairs, but $\pi \pi$ increasing towards central collisions
-> $\mathrm{B}(\boldsymbol{\pi} \boldsymbol{\pi})$ losses beyond acceptance more for peripheral than central collisions.
- Hadron species pairing probabilities very different from single hadron ratios.
e.g. $K \pi$ not larger than $K K$ by π / K ratio; $p p$ larger than $p K$.
-> better constraint for models.

Balance Function experimental outlook

Summary \& Conclusions

$>$ Generalized BF (between different particle species) key observable
-> understand balancing between quarks
-> have access to the timing
-> equivalent to net-baryon C_{2} for critical point search
$>$ GBF (Pb-Pb @ 2.76 TeV):

- Three $1^{\text {st }}$
- $1^{\text {st }}$ GBF measurement of full species matrix of $\pi^{ \pm}, K^{ \pm}, \boldsymbol{p} / \overline{\boldsymbol{p}}$.
- $1^{\text {st }} 2 \mathrm{D}$ differential measurement of PID BF.
- $1^{\text {st }}$ measurement of hadron species pairing probability.
- $B(\Delta y)$ Widths:
- qualitatively consistent with radial flow and two-wave quark production -> a detailed model required to distinguish them.
- $B(\Delta \varphi)$ Widths:
- qualitatively radial flow > diffusion.
- more info on radial flow profile in context of hadron pairs.
- BF Integrals:
- minimal centrality dependence.
- hadron pairing probabilities different from single hadron ratios. -> better constraint for models.

> From Model Comparisons

- Models need to properly account for balancing charge production \& transport mechanisms.

My contributions in BF research:

JP PhD dissertation, arXiv:1911.02234
JP (for ALICE), Nuclear Physics A 982 (2019) 315-318
JP et al. (ALICE), PRL + PRC In Preparation "BF of π, K, p "
JP (for ALICE), J. Phys.: Conf. Ser. 832 (2017) 012044
Basu, Gonzalez, JP, et al. arXiv:2001.07167, Submitted to PRC
Gonzalez, Marin, Guevara, JP, et al. PRC 99, 034907 (2019)
JP et al. (STAR), PRL In Preparation "BF of π, K, p, Λ and Ξ "

More exciting results in STAR BES coming soon!

Thank you!

ALICE

Quark Matter 2018 Talk

ALICE Shift Leader (Honor) - Pb-Pb runs 2018

Back-up

Momentum Space Variables

Transverse plane

p - particle momentum
p_{T} - transverse momentum
φ - azimuthal angle
θ - polar angle
η - pseudorapidity
y-rapidity

$$
\begin{array}{ll}
p_{T}^{2}=p_{x}^{2}+p_{y}^{2} \\
\eta=-\ln \left[\tan \left(\frac{\theta}{2}\right)\right]=\frac{1}{2} \ln \frac{|p|+p_{z}}{|p|-p_{z}} & y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \\
\text { Lorentz invariant }
\end{array}
$$

Centrality of Relativistic Heavy Ion Collisions

Centrality measured by the multiplicity of charged particles

Definition of Anisotropic Flow

- Flow refers to a collective expansion of matter.
- The system follows an anisotropic expansion.
- Anisotropy in the azimuthal particle distribution are studied in terms of the Fourier decomposition.

Spatial
 Anisotropy

$$
v_{n}=\left\langle\cos \left[n\left(\phi-\Psi_{R P}\right)\right]\right\rangle
$$

Models Used In This Work

AMPT

Structure of AMPT model with string melting

HIJING

- QCD Lund jet fragmentation
- Hard parton scatterings dominate
- Emphasis on mini-jets in pp, pA \& AA

EPOS 3.0

Viscous hydrodynamic expansion
Statistical hadronization (Cooper-Frye)
Final state hadronic cascade (UrQMD model)

UrQMD

Hadronic relativistic dynamics Event Generation: W.J. Llope

WAYNE STATE UNIVERSITY

Werner et al. NPA 931(2014)83-91

Track Crossing Correction

The solution / correction

The cause of track crossing
tracks with $\Delta \mathrm{y} \sim 0$

Like-sign: p_{T}-ordered analysis Unlike-sign: charge-ordered analysis

At given $\Delta \phi$, count un-merged pairs and use count at $-\Delta \phi$

Correcting The Collision Centrality Bin Width Effects

Gonzalez, Marin, Guevara, JP, Basu, Pruneau, PRC 99, 034907 (2019)
2-Particle Normalized Cumulant (for multiplicity m)

Weighted Average

$$
\begin{aligned}
& \rho_{1}^{(B i n, k)}\left(\eta_{1}, \varphi_{1}\right)=\bar{\rho}_{1}^{(k)}\left(\eta_{1}, \varphi_{1}\right)=\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m) \rho_{1}\left(\eta_{1}, \varphi_{1} \mid m\right) \\
& \rho_{2}^{(B i n, k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)=\bar{\rho}_{2}^{(k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)=\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m) \rho_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2} \mid m\right)
\end{aligned}
$$

Uncorrected

Weighted Average

$$
\begin{aligned}
& \bar{R}_{2}^{(k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)=\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m) R_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2} \mid m\right) \\
& =\left[\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m) \frac{\rho_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2} \mid m\right)}{\rho_{1}\left(\eta_{1}, \varphi_{1} \mid m\right) \rho_{1}\left(\eta_{2}, \varphi_{2} \mid m\right)}\right]-1
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{1}(\eta, \varphi \mid m)=\langle n\rangle_{m} \mathrm{P}_{1}(\eta, \varphi \mid m) \\
& \rho_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2} \mid m\right)=\langle n(n-1)\rangle_{m} \mathrm{P}_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2} \mid m\right) \quad \mathrm{P}_{1}, \mathrm{P}_{2}-\text { Probability Densities }
\end{aligned}
$$

$$
\begin{aligned}
& R_{2}^{(B i n, k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)= \alpha \frac{\overline{\mathrm{P}}_{2}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)}{\overline{\mathrm{P}}_{1}\left(\eta_{1}, \varphi_{1}\right) \overline{\mathrm{P}}_{1}\left(\eta_{2}, \varphi_{2}\right)}-1 \\
& \alpha=\frac{\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m)\langle n(n-1)\rangle_{m}}{\left(\frac{1}{Q_{k}} \sum_{m=m_{\min , k}}^{m_{\max , k}} q(m)\langle n\rangle_{m}\right)^{2}}
\end{aligned}
$$

$$
\bar{R}_{2}^{(k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)=\beta \alpha^{-1}\left(R_{2}^{(B i n, k)}\left(\eta_{1}, \varphi_{1}, \eta_{2}, \varphi_{2}\right)+1\right)-1
$$

Correcting The Collision Centrality Bin Width Effects
 Gonzalez, Marin, Guevara, JP, Basu, Pruneau, PRC 99, 034907 (2019)

UrQMD (100k events) — Unidentified Hadrons

$$
\begin{aligned}
& R_{2}^{C I}=\frac{1}{4}\left[R_{2}^{+-}+R_{2}^{++}+R_{2}^{-+}+R_{2}^{--}\right] \\
& R_{2}^{C D}=\frac{1}{4}\left[R_{2}^{+-}-R_{2}^{++}+R_{2}^{-+}-R_{2}^{--}\right]
\end{aligned}
$$

Results corrected agree with those obtained with the weighted mean within 1% for both $\mathrm{R}_{2}{ }^{\mathrm{Cl}}$ and $\mathrm{R}_{2}{ }^{\mathrm{CD}}$.
> The correction enables reasonably accurate corrections of the R_{2} correlators in the context of HIJING and UrQMD models.
$>$ Given these models provide relatively realistic representations of single and pair particle spectra, the correction method should provide reasonably reliable bin-width corrections of R2 correlation functions measured at any heavy ion collider.

