Global and local polarization of A hyperons in heavy-ion collisions

Office of

Science

Takafumi Niida

。 筑波大学 University of Tsukuba

WAYNE STATE UNIVERSITY

Nuclear Physics Seminar, BNL

Important features in non-central heavy-ion collisions

spectators

participants

Important features in non-central heavy-ion collisions

Strong magnetic field

$B \sim 10^{13} { m T}$ $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \ \text{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

spectators

participants

+

Strong magnetic field

$B \sim 10^{13} { m T}$ $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \ \text{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

spectators

participants

╋

T. Niida, Nuclear Physics Seminar, BNL

magnetar, wikipedia

 $B \sim 0.1 - 0.5 \text{ T}$ typical magnet surface on magnetar $\,B\sim 10^{11}~{\rm T}$ $B \sim 10^{13} {\rm T}$ HI (200 GeV)

Important features in non-central heavy-ion collisions

Strong magnetic field

$B \sim 10^{13} \text{ T}$ $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \text{ fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Important features in non-central heavy-ion collisions

Strong magnetic field

$B \sim 10^{13} { m T}$ $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \ \text{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Strong magnetic field

$B \sim 10^{13} { m T}$ $(eB \sim m_{\pi}^2 \ (\tau \sim 0.2 \ \text{fm}))$

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008) McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

→Chiral magnetic effect Chiral magnetic wave **Particle polarization**

T. Niida, Nuclear Physics Seminar, BNL

\rightarrow Chiral vortical effect **Particle polarization**

Global polarization

T. Niida, Nuclear Physics Seminar, BNL

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)

^DNon-zero angular momentum transfers to the spin degrees of freedom

• Particles' and anti-particles' spins are aligned with angular momentum, L

^DMagnetic field align particle's spin

• Particles' and antiparticles' spins are aligned oppositely along **B** due to the opposite sign of magnetic moment

How to measure the polarization?

Parity-violating weak decay of hyperons ("self-analyzing")

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$\frac{dN}{d\cos\theta^*} \propto 1 + \alpha_H P_H \cos\theta^*$

 P_{H} : Λ polarization

 θ^* : polar angle of proton relative to the polarization direction in the Λ rest frame

 $\alpha_{\rm H}$: Λ decay parameter

 $(\alpha_{\wedge} = -\alpha_{\bar{\wedge}} = 0.642 \pm 0.013)$

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

 $\Lambda \to p + \pi^-$ (BR: 63.9%, c*τ* ~7.9 cm)

How to measure the polarization?

Parity-violating weak decay of hyperons ("self-analyzing")

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$\frac{dN}{d\cos\theta^*} \propto 1 + \alpha_H P_H \cos\theta^*$

 P_{H} : Λ polarization

 θ *: polar angle of proton relative to the polarization direction in the Λ rest frame

 α н: Λ decay parameter

 $(\alpha_{\wedge} = -\alpha_{\bar{\wedge}} = 0.642 \pm 0.013)$

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

Note: α_H recently updated by BESIII Collaboration $\alpha_A=0.750\pm0.009$, $\alpha_{\bar{A}}=-0.758\pm0.010$

M. Tanabashi et al., (PDG), Phys. Rev. D98, 030001 (2018) and 2019 update

How to measure the "global" polarization?

T. Niida, Nuclear Physics Seminar, BNL

"global" polarization : a net spin alignment along a specific direction

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards) S. Voloshin and TN, PRC94.021901(R)(2016)

$$\frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{\operatorname{Res}(\Psi_1)}$$

 Ψ_1 : azimuthal angle of b ϕ_{p}^{*} : ϕ of daughter proton in Λ rest frame STAR, PRC76, 024915 (2007)

First paper from STAR in 2007

PHYSICAL REVIEW C 76, 024915 (2007)

Global polarization measurement in Au+Au collisions

Results were consistent with zero..., giving an upper limit of $P_H < 2\%$

T. Niida, Nuclear Physics Seminar, BNL

Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ and 200 GeV in 2004 with very limited statistics ($\sim 9M$ events)

III. CONCLUSION

The Λ and $\overline{\Lambda}$ hyperon global polarization has been measured in Au+Au collisions at center-of-mass energies $\sqrt{s_{NN}} = 62.4$ and 200 GeV with the STAR detector at RHIC. An upper limit of $|P_{\Lambda,\bar{\Lambda}}| \leq 0.02$ for the global polarization of A and $\overline{\Lambda}$ hyperons within the STAR detector acceptance is

First observation in BES-I

T. Niida, Nuclear Physics Seminar, BNL

Positive polarization signal at lower energies! -- The most vortical fluid!

$$\begin{split} \omega &= (P_{\Lambda} + P_{\bar{\Lambda}}) k_B T / \hbar \\ &\sim 0.02\text{-}0.09 \text{ fm}^{-1} \\ &\sim 0.6\text{-}2.7 \times 10^{22} \text{s}^{-1} \end{split} \text{(T=160 MeV)}$$

- P_H looks to increase in lower energies

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

First observation in BES-I

T. Niida, Nuclear Physics Seminar, BNL

Positive polarization signal at lower energies! -- The most vortical fluid!

> $\omega = (P_{\Lambda} + P_{\bar{\Lambda}})k_BT/\hbar$ μ_{Λ} : Λ magnetic moment $\sim 0.02 \text{--} 0.09 \text{ fm}^{-1}$ T: temperature at thermal equilibrium $\sim 0.6\text{-}2.7 imes 10^{22} \mathrm{s}^{-1}$ (T=160 MeV)

- P_H looks to increase in lower energies

- Hint of the difference in P_H between Λ and anti- Λ -- Effect of the initial magnetic field? \rightarrow BESII

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$
$$P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Precise measurements at $\sqrt{s_{NN}} = 200$ **GeV**

T. Niida, Nuclear Physics Seminar, BNL

Confirmed energy dependence of P_H with new results for 200 GeV - $>5\sigma$ significance utilizing 1.5B events (2010+2011+2014) - partly due to stronger shear flow structure in lower $\sqrt{s_{NN}}$ because of baryon stopping

Precise measurements at $\sqrt{s_{NN}} = 200 \text{ GeV}$

T. Niida, Nuclear Physics Seminar, BNL

Confirmed energy dependence of P_H with new results for 200 GeV - $>5\sigma$ significance utilizing 1.5B events (2010+2011+2014) - partly due to stronger shear flow structure in lower $\sqrt{s_{NN}}$ because of baryon stopping

 $P_H(\Lambda)$ [%] = 0.277 ± 0.040(stat) ±^{0.039}_{0.049} (sys) $P_H(\bar{\Lambda})$ [%] = 0.240 ± 0.045(stat) ±^{0.061}_{0.045} (sys)

Precise measurements at $\sqrt{s_{NN}} = 200 \text{ GeV}$

T. Niida, Nuclear Physics Seminar, BNL

Confirmed energy dependence of P_H with new results for 200 GeV - $>5\sigma$ significance utilizing 1.5B events (2010+2011+2014) - partly due to stronger shear flow structure in lower $\sqrt{s_{NN}}$ because of baryon stopping

- Theoretical models can describe the data well

I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE H. Li et al., PRC96, 054908 (2017), AMPT Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE Y. Xie et al., PRC95, 031901(R) (2017), PICR D.-X. Wei et al., PRC99, 014905 (2019), AMPT

 $P_H(\Lambda) \ [\%] = 0.277 \pm 0.040 (\text{stat}) \pm \frac{0.039}{0.049} (\text{sys})$

 $P_H(\bar{\Lambda})$ [%] = 0.240 ± 0.045(stat) ±^{0.061}_{0.045} (sys)

Collection of recent results

T. Niida, Nuclear Physics Seminar, BNL

ALICE, arXiv1909.01281 F. Kornas (HADES), SQM2019 J. Adams, K. Okubo (STAR), QM2019

	- STAR Au+Au at $\sqrt{s_{NN}} = 27$ and 54.4 GeV (preliminary)
40%	- ALICE Pb+Pb at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV
	$\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$
	$P_H(\Lambda) \ [\%] = 0.08 \pm 0.10 (\text{stat.}) \pm 0.04 (\%)$
	$P_H(\bar{\Lambda})~[\%] = -0.05 \pm 0.10(\text{stat.}) \pm 0.03($
	$\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
down	$P_H(\Lambda) \ [\%] = -0.13 \pm 0.11 (\text{stat.}) \pm 0.04 ($
down	$P_H(\bar{\Lambda})~[\%] = 0.14 \pm 0.12 (\text{stat.}) \pm 0.03 ($
д	- HADES Au+Au at $\sqrt{s_{NN}} = 2.4$ GeV (prelimina
¥-	$P_H(\Lambda)[\%] = 3.672 \pm 0.699 \text{ (stat.)}$
	$P_{\rm m}^{\rm BG}[\%] = 3.680 \pm 1.133 (\text{stat})$
$\sim 1/1$	H_{H} [/0] – 0.000 \pm 1.100 (Stat.)

T. Niida, Nuclear Physics Seminar, BNL

11

√s_{NN} [GeV]

T. Niida, Nuclear Physics Seminar, BNL

11

More interesting results will come!

Local vorticity

Vortex induced by jet

YT and T. Hirano, Nucl.Phys.A904-905 2013 (2013) 1023c-1026c Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023 B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

T. Niida, Nuclear Physics Seminar, BNL

Local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016) F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf. 171, 07002 (2018) X.-L. Xia et al., PRC98.024905 (2018)

Local vorticity

Vortex induced by jet

YT and T. Hirano, Nucl.Phys.A904-905 2013 (2013) 1023c-1026c Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023 B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

T. Niida, Nuclear Physics Seminar, BNL

Local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016) F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf. 171, 07002 (2018) X.-L. Xia et al., PRC98.024905 (2018)

S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

T. Niida, Nuclear Physics Seminar, BNL

•) Z

S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

- Vorticity along the beam axis!? The rotational axis would depend on azimuthal angle

Polarization along the beam direction

S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

Polarization along the beam direction

- Effect of Ψ_2 resolution is not corrected here

T. Niida, Nuclear Physics Seminar, BNL

Polarization along the beam direction

- Effect of Ψ_2 resolution is not corrected here

T. Niida, Nuclear Physics Seminar, BNL

Centrality dependence of P_z modulation

T. Niida, Nuclear Physics Seminar, BNL

^aStrong centrality dependence as in v₂ ^aSimilar magnitude to the global polarization ^a~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

16

p_T dependence of P_z modulation

T. Niida, Nuclear Physics Seminar, BNL

□No strong p⊤ dependence for p⊤>1 GeV/c

□ A hint of drop-off at pT<1 GeV/c

Hydrodynamic model also predicts a mild pT
 dependence but with the opposite sign and larger
 magnitude

Hydrodynamic model

F. Becattini and I. Karpenko, PRL.120.012302 (2018)

17

Disagreement in P_z sign

Opposite sign

- UrQMD IC + hydrodynamic model
 - -- Assuming a local thermal equilibrium F. Becattini and I. Karpenko, PRL.120.012302 (2018)

- AMPT

X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Same sign

- Chiral kinetic approach
 - -- Assuming non-equilibrium of spin degree of freedom-Y. Sun and C.-M. Ko, PRC99, 011903(R) (2019)
- High resolution (3+1)D PICR hydrodynamic model
 - -- Yang-Mills flux tube IC Y. Xie, D. Wang, and L. P. Csernai, arXiv:1907.00773

Incomplete thermal equilibrium of spin degree of freedom? Importance of relativistic contribution as well as kinematic vorticity in hydro.

Hydrodynamic model P^z , $\sqrt{s_{NN}} = 200 \text{ GeV RHIC}$ 0.016 AMPT, Au+Au 200 GeV 20-50% 0.012 0.008 0.02 py [GeV/ 0.004 0.01 0.000 0.00 -0.004 -0.01-0.008 -0.02 -0.012 3π/2 π/2 π -0.016 ϕ_p -2 -10 1 2 p_x [GeV/ Chiral kinetic approach PICR model

Estimate kinema

rticity

Sine modulation of ω_z is expected with the factor (b_n-a_n). The sign could be negative depending on the relation of flow and spatial anisotropy.

T. Niida, Nuclear Physics Seminar, BNL

the blast-wave model

S. Voloshin, SQM2017 EPJ Web Conf.171, 07002 (2018)

R: reference source radius

ρ_t: transverse flow velocity

 $r_{max} = R[1 - a\cos(2\phi_s)],$

 $\rho_t = \rho_{t,max}[r/r_{max}(\phi_s)][1 + b\cos(2\phi_s)] \approx \rho_{t,max}(r/R)[1 + (a+b)\cos(2\phi_s)].$

Approximation of the kinetic vorticity in the blast-wave model:

 $\omega_z = 1/2(\nabla \times \mathbf{v})_z \approx (\rho_{t,nmax}/R) \sin(n\phi_s)[b_n - a_n].$ flow anisotropy spatial anisotropy

Blast-wave model parameterization

- Hydro-inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
 - Freeze-out temperature T_f
 - Radial flow rapidity ρ_0 and its modulation ρ_2 -
 - Source size R_x and R_y

$$\rho(r,\phi_s) = \tilde{r}[\rho_0 + \rho_2 \cos(2\phi_b)]$$
$$\tilde{r}(r,\phi_s) = \sqrt{(r\cos\phi_s)^2/R_x^2 + (r\sin\phi_s)^2}$$

Calculate vorticity at the freeze-out using the parameters • extracted from spectra, v₂, and HBT fit

$$\begin{split} \langle \omega_z \sin(2\phi) \rangle &= \frac{\int d\phi_s \int r dr \, I_2(\alpha_t) K_1(\beta_t) \omega_z \sin(2\phi_b)}{\int d\phi_s \int r dr \, I_0(\alpha_t) K_1(\beta_t)} \\ \omega_z &= \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right), \end{split}$$

u: local flow velocity, I_n , K_n : modified Bessel functions

T. Niida, Nuclear Physics Seminar, BNL

 $(s)^2/R_u^2$

F. Retiere and M. Lisa, PRC70.044907 (2004)

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $(R_v > R_x)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_2 > 0$ [see Eq. (4)].

 ϕ_s : azimuthal angle of the source element ϕ_b : boost angle perpendicular to the elliptical subshell

ω_z and P_z from the BW model

e.g. Blast-wave fit to spectra and v_2

PHENIX, PRC93.051902(R) (2016)

Calculated vorticity ω_z shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows: $P_z \approx \omega_z / (2T)$

P_z modulation from the BW model

Simple estimate for kinematic vorticity contribution with BW model T. Niida and S. Voloshin in preparation

- Similar magnitude to the data
- Inclusion of HBT in the fit affects the sign in peripheral collisions \bullet

T. Niida, Nuclear Physics Seminar, BNL

STAR, PRL123.13201 (2019)

Summary

- \square A global polarization at $\sqrt{s_{NN}} = 7.7-200$ GeV from STAR
 - Polarization increases in lower energies → Quantitatively consistent with theoretical models

- polarization decreases around $\sqrt{s_{NN}} = 2.4 7.7$ GeV → STAR-FXT $\sqrt{s_{NN}} = 3-7.7$ GeV
- - disagree among the data and theoretical calculations in the sign

□ Λ global polarization at $\sqrt{s_{NN}} = 2.4$ GeV from HADES and 2.7 TeV from ALICE

• Preliminary results are consistent with zero but the HADES result indicates the

 \Box First study of Λ polarization along the beam direction at $\sqrt{s_{NN}} = 200$ GeV

• Quadrupole structure of the polarization relative to the 2nd-order event plane \rightarrow Qualitatively consistent with a picture of the elliptic flow but agree/

• Blast-wave model predicts the same sign and similar magnitude to the data

and Outlook...

Outlook

- o High statistics data of 27 GeV a Fixed-target 3-7.7 GeV with iTP(
- o Isobaric collision data (Ru+Ru, 2
- o Global polarization of multi-strangeness (Ξ and Ω)
- o Forward upgrade

n ALICE/CMS/ATLAS(?) o Global/local polarizations with more data at 5.02 TeV

o Systematic study with possible improvement is ongoing

Back up

Contributions to P_z in hydro

I. Karpenko, QM2018

Longitudinal quadrupole f_2 :

 P_z dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

Can we get such a small kinetic vorticity in the blast-wave

Variations of model parameters for P_H

Initial state: R_{\perp} : transverse granularity R_n : longitudinal granularity

Fluid phase: η/s : shear viscosity of fluid

Particlization criterion: $\varepsilon_{sw} = 0.5 \text{ GeV/fm}^3$

> • Collision energy dependence is robust with respect to variation of the parameters of the model. • There is no big difference between event-by-event and single shot hydrodynamic description.

T. Niida, Nuclear Physics Seminar, BNL

Possible probe of magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

$$P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

$$\mu_{\Lambda:} \Lambda \text{ magnetic moment}$$

$$B = (P_{\Lambda} - P_{\overline{\Lambda}}) k_B T / \mu_{N}$$

$$\sim 5.0 \times 10^{13} \text{ [Tesla]}$$

nuclear magneton $\mu_N = -0.613 \mu_{\Lambda}$

Extracted B-field is close to our expectation. Need more data with better precision →BES-II and Isobaric collisions

STAR Detectors

Time Projection Chamber

<u>(|η|<1)</u>

Vertex Position Detector

- Full azimuthal and large rapidity coverage Excellent particle identification

T. Niida, Nuclear Physics Seminar, BNL

3

Signal extraction with A hyperons

T. Niida, Nuclear Physics Seminar, BNL

D(TM) n dependence of P_H

I. Karpenko and F. Becattini, EPJC(2017)77:213 W.-T. Deng and X.-G. Huang, arXiv:1609.01801

T. Niida, Nuclear Physics Seminar, BNL

^aThe data do not show significant η dependence • Maybe due to baryon transparency at higher energy ^a Also due to event-by-event C.M. fluctuations

pt dependence of P_H

T. Niida, Nuclear Physics Seminar, BNL

^aNo significant p_T dependence, as expected from the initial angular momentum of the system

^aHydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on p_T

3D viscous hydrodynamic model with two initial conditions (ICs)

- UrQMD IC
- Glauber with source tilt IC
 - F. Becattini and I. Karpenko, PRL120.012302, 2018

Azimuthal angle dependence of P_H

Larger polarization in in-plane than in out-of-plane

Azimuthal angle dependence of P_H

T. Niida, Nuclear Physics Seminar, BNL

- Larger polarization in in-plane than in out-of-plane
- Opposite to the hydrodynamic expectation (larger in out-of-plane)

0.012 0.009 0.006 0.003 0.000 -0.003 -0.006 -0.009-0.012

Centrality dependence of P_H

In most central collision \rightarrow no initial angular momentum As expected, the polarization decreases in more central collisions

T. Niida, Nuclear Physics Seminar, BNL

A polarization vs. charge asymmetry

Rotation vs. Polarization

Barnett effect: rotation→polarization

Magnetization of an uncharged body when spun on its axis S. Barnett, Phys. Rev. 6, 239 (1915)

figure: M. Matsuo et al., Front. Phys., 30 (2015)

$$M = \frac{\chi \omega}{\gamma}$$

 χ : magnetic susceptibility γ : gyromagnetic ratio

T. Niida, Nuclear Physics Seminar, BNL

<u>Einstein-de-Haas effect:</u> polarization→rotation

"the only experiment by Einstein"

Rotation of a ferromagnet under change in the direction/strength of magnetic-field to conserve the total angular momentum.

$$\vec{J} = \vec{L} + \vec{S}$$

A.Einstein, W. J. de Haas,

B.Koninklijke Akademie van Wetenschappen te Amsterdam, C.Proceedings, 18 I, 696-711 (1915)

Feed-down effect

from $\Sigma^* \rightarrow \Lambda \pi$, $\Sigma^0 \rightarrow \Lambda \gamma$, $\Xi \rightarrow \Lambda \pi$

 \Box Polarization of parent particle R is transferred to its daughter Λ

$$\begin{split} \mathbf{S}_{\Lambda}^{*} &= C \mathbf{S}_{R}^{*} \qquad \langle S_{y} \rangle \propto \frac{S(S+1)}{3} (\omega + \frac{\mu}{S} B) \\ \text{hi, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)} \qquad \begin{array}{c} C_{\Lambda R} : \text{coefficient of spin transfer from parent} \\ S_{R} &: \text{parent particle's spin} \\ f_{\Lambda R} : \text{fraction of } \Lambda \text{ originating from parent } R \\ \mu_{R} : \text{magnetic moment of particle } R \\ \end{array} \\ &= \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{pmatrix} \end{split}$$

Becattir

$$\begin{pmatrix} \varpi_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) & \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) & \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{R}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{R} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix}^{-1} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix}^{-1} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text{meas}} \end{bmatrix} \begin{bmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\Lambda}^{\text$$

Decay	С
Parity conserving: $1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
Parity conserving: $1/2^- \rightarrow 1/2^+ 0^-$	1
Parity conserving: $3/2^+ \rightarrow 1/2^+ 0^-$	1/3
Parity-conserving: $3/2^- \rightarrow 1/2^+ 0^-$	-1/5
$\Xi^0 ightarrow \Lambda + \pi^0$	+0.900
$\Xi^- ightarrow \Lambda + \pi^-$	+0.927
$\Sigma^0 o \Lambda + \gamma$	-1/3

T. Niida, Nuclear Physics Seminar, BNL

$^{\rm D}$ Only ~25% of measured Λ and anti- Λ are primary, while ~60% are feed-down

15%-20% dilution of primary Λ polarization (model-dependent)

nt R to Λ

Chiral Vortical Effect

T. Niida, Nuclear Physics Seminar, BNL

$$\vec{J}_5 = \left[\frac{1}{2\pi^2}(\mu^2 + \mu_5^2) + \frac{1}{6}T^2\right]\vec{\omega}$$

Observed polarization may get an offset from CVE

βμ 1 βm *Effect of non-zero chemical potential*

Non-zero chemical potential makes polarization splitting between Λ and anti- Λ , but the effect seems to be small.

T. Niida, Nuclear Physics Seminar, BNL

Y. Karpenko, sQM2017

 Λ and $\overline{\Lambda}$: UrQMD+vHLLE vs experiment

only $\mu_{\rm B}$ effect in model

