Global and local polarization of \wedge hyperons in heavy－ion collisions

Takafumi Niida
触號筑波大学
University of Tsukuba
WAYNE STATE UNIVERSITY

Important features in non-central heavy-ion collisions

Important features in non-central heavy-ion collisions

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)
\end{aligned}
$$

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { typical magnet } & B \sim 0.1-0 \\
\text { surface on magnetar } & B \sim 10^{11} \mathrm{~T} \\
\mathrm{HI}(200 \mathrm{GeV}) & B \sim 10^{13} \mathrm{~T}
\end{array}
$$

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)
\end{aligned}
$$

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)
\end{aligned}
$$

Orbital angular momentum

$$
\begin{aligned}
\mathbf{L} & =\mathbf{r} \times \mathbf{p} \\
& \sim b A \sqrt{s_{N N}} \sim 10^{6} \hbar
\end{aligned}
$$

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
B \sim 10^{13} \mathrm{~T}
$$

$\left(e B \sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)$

Orbital angular momentum
Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
\rightarrow Chiral magnetic effect Chiral magnetic wave Particle polarization
\rightarrow Chiral vortical effect
Particle polarization

Global polarization

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)

口Non-zero angular momentum transfers to the spin degrees of freedom oParticles' and anti-particles' spins are aligned with angular momentum, \boldsymbol{L}
-Magnetic field align particle's spin oParticles' and antiparticles' spins are aligned oppositely along \boldsymbol{B} due to the opposite sign of magnetic moment

How to measure the polarization?

Parity-violating weak decay of hyperons ("self-analyzing")

$$
\Lambda \rightarrow p+\pi^{-}
$$

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} \mathrm{P}_{\mathrm{H}} \cos \theta^{*}
$$

Рн: \wedge polarization
θ^{*} : polar angle of proton relative to the polarization direction in the \wedge rest frame
α н: \wedge decay parameter

$$
(\alpha \wedge=-\alpha \bar{\wedge}=0.642 \pm 0.013)
$$

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

How to measure the polarization?

Parity-violating weak decay of hyperons ("self-analyzing")

$$
\Lambda \rightarrow p+\pi^{-}
$$

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} \mathrm{P}_{\mathrm{H}} \cos \theta^{*}
$$

Рн: \wedge polarization
θ^{*} : polar angle of proton relative to the polarization direction in the \wedge rest frame
$\alpha_{\mathrm{H}}: \wedge$ decay parameter

$$
(\alpha \wedge=-\alpha \bar{\wedge}=0.642 \pm 0.013)
$$

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

Note: $a_{\text {н }}$ recently updated by BESIII Collaboration
$a_{\Lambda}=0.750 \pm 0.009, a_{\lambda}=-0.758 \pm 0.010$
M. Tanabashi et al., (PDG), Phys. Rev. D98, 030001 (2018) and 2019 update

How to measure the "global" polarization?

"global" polarization : a net spin alignment along a specific direction

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)
S. Voloshin and TN, PRC94.021901 (R) (2016)

$$
P_{\mathrm{H}}=\frac{8}{\pi \alpha_{\mathrm{H}}} \frac{\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right)}
$$

First paper from STAR in 2007

PHYSICAL REVIEW C 76, 024915 (2007)

Global polarization measurement in Au+Au collisions

Au + Au collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=62.4$ and 200 GeV in 2004 with very limited statistics ($\sim 9 \mathrm{M}$ events)

III. CONCLUSION

The Λ and $\bar{\Lambda}$ hyperon global polarization has been measured in $\mathrm{Au}+\mathrm{Au}$ collisions at center-of-mass energies $\sqrt{s_{N N}}=62.4$ and 200 GeV with the STAR detector at RHIC. An upper limit of $\left|P_{\Lambda, \bar{\Lambda}}\right| \leqslant 0.02$ for the global polarization of Λ and $\bar{\Lambda}$ hyperons within the STAR detector acceptance is

Results were consistent with zero..., giving an upper limit of $\mathrm{P}_{\mathrm{H}}<2 \%$

First observation in BES-I

STAR, Nature 548, 62 (2017)

Positive polarization signal at lower energies!
-- The most vortical fluid!

$$
\begin{array}{rlr}
\omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar & \\
& \sim 0.02-0.09 \mathrm{fm}^{-1} \quad \quad \quad \begin{array}{l}
\mu: \wedge \text { magnetic moment } \\
\text { : temperature at therma }
\end{array} \\
& \sim 0.6-2.7 \times 10^{22} \mathrm{~s}^{-1} \quad(\mathrm{~T}=160 \mathrm{MeV})
\end{array}
$$

- Ph looks to increase in lower energies

First observation in BES-I

STAR, Nature 548, 62 (2017)

Positive polarization signal at lower energies!
-- The most vortical fluid!

$$
\begin{aligned}
\omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar \\
& \sim 0.02-0.09 \mathrm{fm}^{-1} \quad \text { Th: } \wedge \text { magnetic moment } \\
& \sim 0.6-2.7 \times 10^{22} \mathrm{~S}^{-1} \quad(\mathrm{~T}=160 \mathrm{MeV})
\end{aligned}
$$

- Pн looks to increase in lower energies
- Hint of the difference in $\mathrm{P}_{\boldsymbol{H}}$ between \wedge and anti- \wedge
-- Effect of the initial magnetic field? \rightarrow BESII

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T}-\frac{\mu_{\Lambda} B}{T}
\end{aligned}
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Precise measurements at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

Confirmed energy dependence of P_{H} with new results for 200 GeV $>5 \sigma$ significance utilizing 1.5 B events $(2010+2011+2014)$

- partly due to stronger shear flow structure in lower $\sqrt{ } \mathrm{S}_{\mathrm{NN}}$ because of baryon stopping

Precise measurements at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

Confirmed energy dependence of P_{H} with new results for 200 GeV $>5 \sigma$ significance utilizing 1.5B events (2010+2011+2014)

- partly due to stronger shear flow structure in lower $\sqrt{ } \mathrm{S}_{\mathrm{NN}}$ because of baryon stopping

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=0.277 \pm 0.040(\text { stat }) \pm_{0.049}^{0.039}(\text { sys }) \\
& P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045(\text { stat }) \pm_{0.045}^{0.061}(\text { sys })
\end{aligned}
$$

Precise measurements at $\sqrt{ } s_{N N}=200 \mathrm{GeV}$

Confirmed energy dependence of P_{H} with new results for 200 GeV $>5 \sigma$ significance utilizing 1.5 B events (2010+2011+2014)

- partly due to stronger shear flow structure in lower $\sqrt{ } \mathrm{S}_{\mathrm{NN}}$ because of baryon stopping

Theoretical models can describe the data well
I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE H. Li et al., PRC96, 054908 (2017), AMPT
Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE
Y. Xie et al., PRC95, 031901 (R) (2017), PICR
D.-X. Wei et al., PRC99, 014905 (2019), AMPT

$$
P_{H}(\Lambda)[\%]=0.277 \pm 0.040(\text { stat }) \pm_{0.049}^{0.039}(\mathrm{sys})
$$

$$
P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045(\mathrm{stat}) \pm_{0.045}^{0.061}(\mathrm{sys})
$$

Collection of recent results

ALICE, arXiv1909.01281
F. Kornas (HADES), SQM2019
J. Adams, K. Okubo (STAR), QM2019

STAR Au $+A u$ at $\sqrt{ } \mathrm{S}_{\mathrm{SN}}=27$ and 54.4 GeV (preliminary)

ALICE Pb+Pb at $\sqrt{ } \mathrm{S}_{\mathrm{sn}}=2.76$ and 5.02 TeV

$$
\begin{aligned}
& \sqrt{s_{N N}}= 2.76 \mathrm{TeV} \\
& P_{H}(\Lambda)[\%]=0.08 \pm 0.10 \text { (stat.) } \pm 0.04 \text { (syst.) } \\
& P_{H}(\bar{\Lambda})[\%]=-0.05 \pm 0.10 \text { (stat.) } \pm 0.03 \text { (syst.) } \\
& \sqrt{s_{N N}}=5.02 \mathrm{TeV} \\
& P_{H}(\Lambda)[\%]=-0.13 \pm 0.11 \text { (stat.) } \pm 0.04 \text { (syst.) } \\
& P_{H}(\bar{\Lambda})[\%]=0.14 \pm 0.12 \text { (stat.) } \pm 0.03 \text { (syst.) }
\end{aligned}
$$

HADES Au+Au at $\sqrt{S_{N N}}=2.4 \mathrm{GeV}$ (preliminary)

$$
\begin{aligned}
P_{H}(\Lambda)[\%] & =3.672 \pm 0.699 \text { (stat.) } \\
P_{H}^{\mathrm{BG}}[\%] & =3.689 \pm 1.133 \text { (stat.) }
\end{aligned}
$$

Collection of recent results

ALICE, arXiv1909.01281
F. Kornas (HADES), SQM2019
J. Adams, K. Okubo (STAR), QM2019

Interesting energy dependence of thermal vorticity (UrQMD) X.-G. Deng et al., arXiv:2001.01371

Collection of recent results

ALICE, arXiv1909.01281
F. Kornas (HADES), SQM2019
J. Adams, K. Okubo (STAR), QM2019

Local vorticity

Vortex induced by jet

Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023
B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

Local vorticity induced by collective flow

Local vorticity

Vortex induced by jet

Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023
B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

Local vorticity induced by collective flow

[^0]
Local vorticity due to the elliptic flow?

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

Local vorticity due to the elliptic flow?

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

Local vorticity due to the elliptic flow?

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

Local vorticity due to the elliptic flow?

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane (short-axis) than in out-of-plane (long axis) due to different pressure gradient, called the elliptic flow

Vorticity along the beam axis!?
The rotational axis would depend on azimuthal angle

Polarization along the beam direction

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

$$
\begin{aligned}
\frac{d N}{d \Omega^{*}} & =\frac{1}{4 \pi}\left(1+\alpha_{\mathrm{H}} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_{p}^{*}\right) \\
\left\langle\cos \theta_{p}^{*}\right\rangle & =\int \frac{d N}{d \Omega^{*}} \cos \theta_{p}^{*} d \Omega^{*} \\
& =\alpha_{\mathrm{H}} P_{z}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle \\
\therefore P_{z} & =\frac{\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle} \\
& =\frac{3\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}} \text { (if perfect detector) }
\end{aligned}
$$

α н: hyperon decay parameter
$\theta_{p}:: \theta$ of daughter proton in \wedge rest frame $<\left(\cos \theta_{\mathrm{p}}{ }^{*}\right)^{2}>$ accounts for an acceptance effect

Polarization along the beam direction

- Effect of Ψ_{2} resolution is not corrected here
S. Voloshin, SQM2017

\square Sine structure as expected from the elliptic flow!

Polarization along the beam direction

S. Voloshin, SQM2017

out-of-plane
\square Sine structure as expected from the elliptic flow!

- Some models (viscous hydro, AMPT) cannot describe the sign but some of them (chiral kinetic, PICR) can do.
- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)
- Y. Sun and C.-M. Ko, PRC99, 011903 (R) (2019)
- Y. Xie, D. Wang, and L. P. Csernai, arXiv:1907.00773
F. Becattini and I. Karpenko,

PRL. 120.012302 (2018)

- Effect of Ψ_{2} resolution is not corrected here

Centrality dependence of P_{z} modulation

STAR, PRL123.13201 (2019)

口Strong centrality dependence as in V_{2}
-Similar magnitude to the global polarization口~5 times smaller magnitude than the hydro and AMPT with the opposite sign!

p_{T} dependence of P_{z} modulation

STAR, PRL123.13201 (2019)

- No strong рт $^{\prime}$ dependence for $\mathrm{p}_{\mathrm{T}}>1 \mathrm{GeV} / \mathrm{c}$
- A hint of drop-off at $\mathrm{pT}<1 \mathrm{GeV} / \mathrm{c}$
- Hydrodynamic model also predicts a mild pT dependence but with the opposite sign and larger magnitude

Hydrodynamic model
F. Becattini and I. Karpenko, PRL. 120.012302 (2018)

Disagreement in P_{z} sign

Opposite sign

- UrQMD IC + hydrodynamic model
-- Assuming a local thermal equilibrium
F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- AMPT
X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

$p_{x}[\mathrm{GeV} /$
Chiral kinetic approach
Au+Au @ 200 GeV, 30-40\%

PICR model $\Pi_{0 z}\left(p_{x}, p_{y}\right)$

Incomplete thermal equilibrium of spin degree of freedom? Importance of relativistic contribution as well as kinematic vorticity in hydro.

Estimate kinematic vorticity with the blast-wave model

S. Voloshin, SQM2017

EPJ Web Conf. 171,07002 (2018)

$$
\begin{aligned}
& r_{\text {max }}=R\left[1-a \cos \left(2 \phi_{s}\right)\right], \\
& \rho_{t}=\rho_{t, \max }\left[r / r_{\max }\left(\phi_{s}\right)\right]\left[1+b \cos \left(2 \phi_{s}\right)\right] \approx \rho_{t, \max }(r / R)\left[1+(a+b) \cos \left(2 \phi_{s}\right)\right] .
\end{aligned}
$$

Approximation of the kinetic vorticity in the blast-wave model:

$$
\omega_{z}=1 / 2(\nabla \times \mathbf{v})_{z} \approx\left(\rho_{t, n \max } / R\right) \sin \left(n \phi_{s}\right) \frac{\left[b_{n}-a_{n}\right] .}{\substack{\frac{1}{1} \\ \text { spatial anisotropy }}}
$$

Sine modulation of ω_{z} is expected with the factor $\left(b_{n}-a_{n}\right)$.
The sign could be negative depending on the relation of flow and spatial anisotropy.

Blast-wave model parameterization

- Hydro-inspired model parameterized with freeze-out condition

assuming the longitudinal boost invariance

- Freeze-out temperature T_{f}
- Radial flow rapidity ρ_{0} and its modulation ρ_{2}
- Source size R_{x} and R_{y}

$$
\begin{aligned}
& \rho\left(r, \phi_{s}\right)=\tilde{r}\left[\rho_{0}+\rho_{2} \cos \left(2 \phi_{b}\right)\right] \\
& \tilde{r}\left(r, \phi_{s}\right)=\sqrt{\left(r \cos \phi_{s}\right)^{2} / R_{x}^{2}+\left(r \sin \phi_{s}\right)^{2} / R_{y}^{2}}
\end{aligned}
$$

- Calculate vorticity at the freeze-out using the parameters extracted from spectra, v_{2}, and HBT fit

$$
\begin{aligned}
\left\langle\omega_{z} \sin (2 \phi)\right\rangle & =\frac{\int d \phi_{s} \int r d r I_{2}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right) \omega_{z} \sin \left(2 \phi_{b}\right)}{\int d \phi_{s} \int r d r I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)} \\
\omega_{z} & =\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right),
\end{aligned}
$$

F. Retiere and M. Lisa, PRC70.044907 (2004)

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $\left(R_{y}>R_{x}\right)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_{2}>0$ [see Eq. (4)].
ϕ_{s} : azimuthal angle of the source element
Φ_{b} : boost angle perpendicular to the elliptical subshell

ω_{z} and P_{z} from the BW model

e.g. Blast-wave fit to spectra and v_{2}

Data from:
PHENIX, PRC69.034909 (2004)
PHENIX, PRC93.051902(R) (2016)

$p_{T}[\mathrm{GeV} / \mathrm{c}]$

Calculated vorticity ω_{z} shows the sine modulation. Assuming a local thermal equilibrium, z-component of polarization is estimated as follows:

$$
P_{z} \approx \omega_{z} /(2 T)
$$

P_{z} modulation from the BW model

- Simple estimate for kinematic vorticity contribution with BW model
- Similar magnitude to the data
T. Niida and S. Voloshin in preparation
- Inclusion of HBT in the fit affects the sign in peripheral collisions

Summary

- \wedge global polarization at $\sqrt{ } \mathrm{SNN}^{2}=7.7-200 \mathrm{GeV}$ from STAR
- Polarization increases in lower energies
\rightarrow Quantitatively consistent with theoretical models
- \wedge global polarization at $\sqrt{ } \mathrm{SNN}=2.4 \mathrm{GeV}$ from HADES and 2.7 TeV from ALICE
- Preliminary results are consistent with zero but the HADES result indicates the polarization decreases around $\sqrt{S N N}=2.4-7.7 \mathrm{GeV}$
\rightarrow STAR-FXT $\sqrt{ }$ Snn $=3-7.7 \mathrm{GeV}$
- First study of \wedge polarization along the beam direction at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$
- Quadrupole structure of the polarization relative to the 2nd-order event plane \rightarrow Qualitatively consistent with a picture of the elliptic flow but agree/ disagree among the data and theoretical calculations in the sign
- Blast-wave model predicts the same sign and similar magnitude to the data

Outlook

W.-T. Deng and X.-G. Huang, PRC93.064907 (2016)
D.-X. Wei et al., PRC99.014905 (2019) X.-G. Deng et al., arXiv:2001.01371

- STAR

- High statistics data of 27 GeV and BES-II 7.7-19.6 GeV and

Fixed-target 3-7.7 GeV with iTPC and EPD (x10 events, better EP, $|\eta|<1.5$)
o Isobaric collision data ($\mathrm{Ru}+\mathrm{Ru}, \mathrm{Zr}+\mathrm{Zr}$), $\sim 10 \%$ difference in B -field

- Global polarization of multi-strangeness ($\overline{\text { and }} \Omega$)
o Forward upgrade

- ALICE/CMS/ATLAS(?)

- Global/local polarizations with more data at 5.02 TeV

- HADES

- Systematic study with possible improvement is ongoing

Back up

Contributions to P_{z} in hydro

I. Karpenko, QM2018

$$
\begin{aligned}
& S^{\mu} \propto \varepsilon^{\mu \rho \sigma \tau} \varpi_{\rho \sigma} p_{\tau}=\varepsilon^{\mu \rho \sigma \tau}\left(\partial_{\rho} \beta_{\sigma}\right) p_{\tau}=\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} \partial_{\rho}\left(\frac{1}{T}\right) u_{\sigma}}_{\text {grad } T}+\underbrace{\frac{1}{T} 2\left[\omega^{\mu}(u \cdot p)-u^{\mu}(\omega \cdot p)\right]}_{\text {"NR vorticity" }}+\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} A_{\sigma} u_{\rho}}_{\text {acceleration }} \\
& \text { udinal quadrupole } f_{2}: \quad \text { temperature gradient } \quad \text { rematic vorticity } \quad \text { relativistic term }
\end{aligned}
$$

Longitudinal quadrupole f_{2} :

P_{z} dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

Can we get such a small kinetic vorticity in the blast-wave model?

Variations of model parameters for P_{H}

I. Karpenko, QM2017

variation of model parameters

Initial state:
R_{\perp} : transverse granularity
R_{η} : longitudinal granularity
Fluid phase:
η / s : shear viscosity of fluid
Particlization criterion:
$\varepsilon_{\mathrm{sw}}=0.5 \mathrm{GeV} / \mathrm{fm}^{3}$

event-by-event vs. averaged

- Collision energy dependence is robust with respect to variation of the parameters of the model.
- There is no big difference between event-by-event and single shot hydrodynamic description.

Possible probe of magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega^{\prime \prime}}{T}{ }^{\prime \prime}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega^{\|}}{T}-\frac{\mu_{\Lambda} B}{T} \\
& \mu_{\wedge}: \wedge \text { magnetic moment } \\
& B=\left(P_{\Lambda}-P_{\bar{\Lambda}}\right) k_{B} T / \mu_{\mathrm{N}} \\
& \sim 5.0 \times 10^{13} \text { [Tesla] } \\
& \text { nuclear magneton } \mu_{N}=-0.613 \mu_{\wedge} \\
& \text { conductivity increases lifetime } \\
& \text { (not magnitude) } \\
& B \sim 10^{13} \mathrm{~T} \\
& \left(e B \sim \mathrm{MeV}^{2}(\tau=0.2 \mathrm{fm})\right)
\end{aligned}
$$

Extracted B-field is close to our expectation.
Need more data with better precision
\rightarrow BES-II and Isobaric collisions

STAR Detectors

TPC dE/dx vs momentum/charge

TOF $1 / \beta$ vs momentum/charge

Signal extraction with \wedge hyperons

$$
\begin{aligned}
\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle^{\mathrm{obs}}= & \left(1-f^{\mathrm{Bg}}\left(M_{\mathrm{inv}}\right)\right)\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle^{\mathrm{Sg}} \\
& +f^{\mathrm{Bg}}\left(M_{\mathrm{inv}}\right)\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle^{\mathrm{Bg}},
\end{aligned}
$$

η dependence of P_{H}

- Shear flow structure/initial flow velocity would be stronger in forward/backward region
- Expect rapidity dependence of the polarization

STAR, PRC98, 014910 (2018)
-The data do not show significant η dependence \square Maybe due to baryon transparency at higher energy - Also due to event-by-event C.M. fluctuations

p_{t} dependence of P_{H}

- No significant рт dependence, as expected from $^{\text {d }}$ the initial angular momentum of the system
口Hydrodynamic model underestimates the data. Initial conditions affect the magnitude and dependence on рт

3D viscous hydrodynamic model with two initial conditions (ICs)

- UrQMD IC
- Glauber with source tilt IC
F. Becattini and I. Karpenko, PRL120.012302, 2018

Azimuthal angle dependence of P_{H}

\downarrow Larger polarization in in-plane than in out-of-plane

Azimuthal angle dependence of P_{H}

I. Karpenko and F. Becattini, EPJC(2017)77:213

- Larger polarization in in-plane than in out-of-plane
\uparrow Opposite to the hydrodynamic expectation (larger in out-of-plane)

Centrality dependence of P_{H}

In most central collision \rightarrow no initial angular momentum
As expected, the polarization decreases in more central collisions

Λ polarization vs. charge asymmetry

Chiral Separation Effect

B-field + massless quarks + non-zero $\mu_{v} \rightarrow$ axial current J_{5}

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle}=A_{\mathrm{ch}}
$$

\square Slopes of Λ and anti- \wedge seem to be different ($\sim 2 \sigma$ level)口Possible contribution to the polarization from the axial current J_{5} induced by B-field (Chiral Separation Effect) S. Shlichting and S. Voloshin

Rotation vs. Polarization

Barnett effect:

rotation \rightarrow polarization
Magnetization of an uncharged body
when spun on its axis S. Barnett, Phys. Rev. 6, 239 (1915)

figure: M. Matsuo et al., Front. Phys., 30 (2015)

$$
M=\frac{\chi \omega}{\gamma} \quad \begin{gathered}
x: \text { magnetic susceptibility } \\
r: \text { gyromagnetic ratio }
\end{gathered}
$$

Einstein-de-Haas effect:

 polarization \rightarrow rotation
"the only experiment by Einstein"

Rotation of a ferromagnet under change in the direction/strength of magnetic-field to conserve the total angular momentum.

$$
\vec{J}=\vec{L}+\vec{S}
$$

A.Einstein, W. J. de Haas,
B.Koninklijke Akademie van Wetenschappen te Amsterdam, C.Proceedings, 18 I, 696-711 (1915)

Feed-down effect

- Only $\sim 25 \%$ of measured \wedge and anti- \wedge are primary, while $\sim 60 \%$ are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma 0 \rightarrow \wedge r, \equiv \rightarrow \wedge \pi$
- Polarization of parent particle R is transferred to its daughter Λ

$$
\mathbf{S}_{\Lambda}^{*}=C \mathbf{S}_{R}^{*} \quad\left\langle S_{y}\right\rangle \propto \frac{S(S+1)}{3}\left(\omega+\frac{\mu}{S} B\right)
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95. 054902 (2017)
$C_{\wedge R}$: coefficient of spin transfer from parent R to Λ
S_{R} : parent particle's spin
$f_{\wedge R}$: fraction of \wedge originating from parent R
μ_{R} : magnetic moment of particle R

$$
\binom{\varpi_{\mathrm{c}}}{B_{\mathrm{c}} / T}=\left[\begin{array}{ll}
\frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right) S_{R}\left(S_{R}+1\right) & \frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right)\left(S_{R}+1\right) \mu_{R} \\
\frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right) S_{\bar{R}}\left(S_{\bar{R}}+1\right) & \frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right)\left(S_{\bar{R}}+1\right) \mu_{\bar{R}}
\end{array}\right]^{-1}\binom{P_{\Lambda}^{\text {meas }}}{P_{\overline{\bar{\Lambda}}}^{\text {meas }}}
$$

Decay	C
Parity conserving: $1 / 2^{+} \rightarrow 1 / 2^{+} 0^{-}$	$-1 / 3$
Parity conserving: $1 / 2^{-} \rightarrow 1 / 2^{+} 0^{-}$	1
Parity conserving: $3 / 2^{+} \rightarrow 1 / 2^{+}$	0^{-}
Parity-conserving: $3 / 2^{-} \rightarrow 1 / 2^{+}$	0^{-}
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	$-1 / 3$
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.900
$\Sigma^{0} \rightarrow \Lambda+\gamma$	+0.927

$15 \%-20 \%$ dilution of primary \wedge polarization (model-dependent)

Chiral Vortical Effect

Observed polarization may get an offset from CVE

Effect of non-zero chemical potential

Y. Karpenko, sQM2017
Λ and $\bar{\Lambda}$: UrQMD+vHLLE vs experiment

only $\mu_{\text {в }}$ effect in model

Non-zero chemical potential makes polarization splitting between Λ and anti- Λ, but the effect seems to be small.

[^0]: L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016) F. Becattini and I. Karpenko, PRL120.012302 (2018)
 S. Voloshin, EPJ Web Conf. 171, 07002 (2018)
 X.-L. Xia et al., PRC98. 024905 (2018)

