NNL Developed TSL Evaluations

M. L. Zerkle

CSEWG – Evaluation Committee December 1, 2020

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion, LLC, a wholly owned subsidiary of Fluor Corporation.

12 New and Revised TSL Evaluations

Material	Evaluation	MAT	Туре	Temperatures	Eval. Code	Notes
UH ₃	H(UH ₃)	9	New	293.6	LEAPR	AILD, H incoherent approx.
YH ₂	Y(YH ₂)	55	Rev	293.6,400,500,600,700,800,1000,1200,1400,1600	FLASSH	AILD, Y coherent elastic
δ-ZrH _x	H(ZrH _x)	5	Rev	293.6,400,500,600,700,800,1000,1200	FLASSH	AIMD, H incoherent
	Zr(ZrH _x)	58	Rev	293.6,400,500,600,700,800,1000,1200	FLASSH	AILD. Zr coherent elastic
ε-ZrH ₂	H(ZrH ₂)	5	New	293.6,400,500,600,700,800,1000,1200	FLASSH	AIMD, H incoherent
	Zr(ZrH ₂)	58	New	293.6,400,500,600,700,800,1000,1200	FLASSH	AILD, Zr coherent elastic,
Be ₂ C	Be(Be ₂ C)	28	New	293.6,400,500,600,700,800,1000,1200,1600,2000	FLASSH	AILD, Be coherent elastic
	C(Be ₂ C)	36	New	293.6,400,500,600,700,800,1000,1200,1600,2000	FLASSH	AILD, C coherent elastic
⁷ LiH	H(⁷ LiH)	4	New	293.6,400,500,600,700,800	FLASSH	AILD, mixed elastic scattering
	⁷ Li(⁷ LiH)	21	New	293.6,400,500,600,700,800	FLASSH	AILD, mixed elastic scattering
⁷ LiD	D(⁷ LiD)	15	New	293.6,400,500,600,700,800	FLASSH	AILD, mixed elastic scattering
	⁷ Li(⁷ LiD)	22	New	293.6,400,500,600,700,800	FLASSH	AILD, mixed elastic scattering

Also have ⁷LiH and ⁷LiD evaluations based on incoherent approximation

$H(UH_3)$

$\beta\text{-}UH_3$ stable at room temperature and above

- 8 molecules per unit cell
- 6.643 Å lattice constant

PDOS calculated using VASP/PHONON

- Spin-polarized magnetism
- GGA+U to account for 5f electrons Benchmark testing in progress

HEU-COMP-INTER-003

Y(YH₂) Revision

- Revision of NNL Y(YH₂) TSL evaluation
- Same physical model for inelastic scattering
- Elastic scattering improved (relaxed incoherent approx.)
 - Bragg edges calculated using FLASSH general elastic scattering treatment based on YH_2 unit call structure
- Validation expected to be difficult since H(YH₂) dominates
 - Might be able to see effect in modern neutron transmission measurements

Coherent elastic scattering cross sections for Y(YH₂)

Comparison of revised (solid) and original (dotted) NNL Y(YH₂) evalution total scattering cross sections showing effect of correctly treating coherent scattering

Zirconium Hydride Phonon Model

Zr(ZrH_x)

- Ab initio Lattice Dynamics (AILD)
 - Large mass and small vibrational displacement
 - Harmonic approximation reasonable
 - 2x2x2 δ-ZrH_{1.5} supercell (80 atoms)
 - 3x3x2 ε-ZrH₂ supercell (108 atoms)
- VASP-PHONON
 - GGA-PBE
 - 450 eV plane wave cut-off
 - < 1.8 nm⁻¹ k-point mesh

H(ZrH_x)

- Ab Initio Molecular Dynamics (AIMD)
 - Low H mass results in large vibrational displacements
 - Anharmonicity even at 0 K
 - 3x3x3 δ-ZrH_{1.5} supercell (270 atoms)
 - 4x4x3 ε-ε-ZrH₂ supercell (288 atoms)
- VASP MD
 - GGA-PBE
 - 350 eV plane wave cut-off
 - < 0.6 nm⁻¹ k-point mesh
 - 300 K with NVT ensemble
 - 0.00025 fs time steps
 - 1 ps equilibration + 1.5 ps simulation

Zirconium Hydride Model Validation

- AIMD hydrogen phonons improved agreement compared to both
 - General Atomics (GA) model for current ENDF
 - AILD calculations
- Initial TSL validation performed through direct comparison with experiment for ε-phase
 - Current evaluations and ENDF/B-VIII.0
- Differential and double differential cross sections computed direct from FLASSH
- Current evaluations consistent with ENDF/B-VIII.0 and experiment in inelastic behavior
- New elastic treatment consistent with experiment
 - Bragg peaks for ZrH₂ model trend with behavior of measured differential cross section

TSL for Different Phases

- TSLs for $\delta\text{-phase}$ and $\epsilon\text{-phase}$ are compared
- δ -H(ZrH_x) and ϵ -H(ZrH₂) both have strong quantum oscillator effect
- δ -phase diverges from ϵ -phase with increasing phonon order
 - Higher energy phonon spectra in δ -phase relative to ϵ -phase
- δ -Zr(ZrH_x) and ϵ -Zr(ZrH₂) are similar
 - Quantum oscillator effect is observed though small contributor

β

Scattering Cross Section Validation

- Total Scattering Cross Section generated from TSL using NDEX
 - Adaptive energy mesh based on tabulated β-mesh captures oscillations to all phonon orders (ANE 149, 15 (2020) 107773)
- Coherent elastic cross section improve agreement with experiment compared to ENDF/B-VIII.0
- Consistent agreement in oscillations between current evaluation and ENDF/B-VIII.0
- NNL and ENDF/B: δ -ZrH_x parallel in 1/v region but ϵ -ZrH₂ diverge in 1/v region
 - Less pronounced acoustic phonons in ε-ZrH₂
- At high temperatures coherent elastic scattering persists but is reduced, optical phonon up-scattering dominant
 - Cross section of current evaluation and ENDF/B-VIII.0 nearly the same for both phases

Be₂C unit cell

(4.324 Å)

- PDOS calculated using AILD (VASP/PHONON)
 - 3x3x3 supercell, LO/TO splitting
- Heat capacity in reasonable agreement with SNL measurements, 1950s NEPA data suspect
- FLASSH used in order to capture coherent elastic scattering effects
- Be(Be₂C) and C(Be₂C) evaluated at 10 temperatures between 293.6 - 2000 K
- Transmission and INS measurements needed

⁷LiH and ⁷LiD

- Mixed elastic scattering treatment used to capture coherent and incoherent scattering effects in ⁷Li and D
- AILD used to calculate PDOS
- TSL calculated at 6 temperature between 293.6 800 K using FLASSH
- Coherent elastic based on crystal structure and measured RT lattice constant by Zimmerman (*Phys. Rev. B*, 5, 4704 (1972))

LiH unit cell (4.0831 Å for LiH, 4.0684 Å for LiD)

⁷LiD

