Cr Evaluations

G.P.A. Nobre¹, M. T. Pigni², D.A. Brown¹, R. Capote³, A. Trkov⁴, R. Arcilla¹, A. Cuadra⁵, K.H. Guber², G. Arbanas², B. Kos⁴, R. Arcilla¹, J. Gutierrez⁶

¹National Nuclear Data Center, Brookhaven National Laboratory
²Oak Ridge National Laboratory
³NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
⁴Jozef Stefan Institute, Slovenia
⁵Nuclear Systems & Structural Analysis Group, Brookhaven National Laboratory
⁶Gonzaga University, Spokane, WA

2020 Nuclear Data Week - CSEWG, November 30th - December 4th, 2020

Summary of Cr evaluations

- Isotope and reactions to update?
 - *^{50,53}Cr: thermal and up to 10 keV; all reactions in fast region.
 - *^{52,54}Cr: all reactions in fast region.
 - *Reconstructed isotopic angular distributions in resonance region.
- Motivation? Deficiencies in the current ENDF/B-VIII.0?
 - * Chromium is an important alloy in stainless steel. After recent evaluation of iron, it is essential to better constrain Cr files.
 - *^{50,53}Cr: Cluster of capture resonances in the region 1-10 keV drive criticality in Cr-sensitive benchmarks. ENDF/B-VIII.0 followed data with inaccurate correction determination in this region (e.g., MS)
- What new data/theory motivate a new evaluation/update?
 - *Appropriate normalization of Guber ⁵³Cr(n,g) data (ORNL) in the 1-10 keV region
 - *Neutron and gamma ⁵²Cr inelastic data from Mihailescu (GEEL)
 - *New soft-rotor dispersive optical potential for ^{50,52,54}Cr, interpolated as rigid rotor for ⁵³Cr
- What validation testing has been/will be done?
 - * Chromium-sensitive benchmarks identified, in particular KBR-15 (HEU-COMP-INTER-005 k_{∞}) and ZPR-6/10 (PU-MET-INTER-002) with strong sensitivity to Cr – both are big outliers (11% and 2% in k, respectively)
 - *Oktavian-Cr 14 MeV leakage: Not in SINBAD, new model developed in JSI
 - *New evaluation greatly improves reactivity prediction and performs well for the 14 MeV benchmark

50-CI 4%

53-Cr 54-Cr 2%

52-Cr

84%

10%

Addressing the exp. discrepancy

- Discrepancy between ⁵³Cr capture sets from Stieglitz and Guber
- ENDF/B-VIII.0 and BROND follow different improper corrections when converting data from yields to cross section
- Used NatCr transmission data to constrain the normalization of isotopic capture data

Fast neutron range

- New chromium-specific soft-rotor dispersive optical model potential, fitted to Abfalterer ^{nat}Cr(n,tot) data.
- Due to low-energy level densities being strongly parity asymmetric, we adopted tuned* RIPL-3 HFB LD for ⁵²Cr. Gilbert-Cameron for the minor isotopes
- Calculations done using the reaction code EMPIRE

Fast neutron range

- New chromium-specific soft-rotor dispersive optical model potential, fitted to Abfalterer natCr(n,tot) data.
- Due to low-energy level densities being strongly parity asymmetric, we adopted tuned* RIPL-3 HFB LD for ⁵²Cr. Gilbert-Cameron for the minor isotopes
- Calculations done using the reaction code EMPIRE

*G.P.A. Nobre et al., Phys. Rev. C 101, 034608 (2020)

Fast neutron range

- New chromium-specific soft-rotor dispersive optical model potential, fitted to Abfalterer natCr(n,tot) data.
- Due to low-energy level densities being strongly parity asymmetric, we adopted tuned* RIPL-3 HFB LD for ⁵²Cr. Gilbert-Cameron for the minor isotopes
- Calculations done using the reaction code EMPIRE

^{*}G.P.A. Nobre et al., Phys. Rev. C 101, 034608 (2020)

Summary

- New evaluated files for stable chromium isotopes represent a major improvement compared to existing files: Data agreement and Performance
- **Submitted** to ENDF/B library and IAEA for testing and distribution
- Article in final stages of preparation to be submitted to Nuclear Data Sheets
- Details and results of validation from criticality and leakage benchmarks will be presented tomorrow in the <u>Validation session</u>

Overall improvement in the agreement with experimental data when compared with ENDF/B-VIII.0

Korzh, 1982 ----ENDF/B-VIII.0

E.... = 7.00 MeV

80 100 120 140 160 0 20 40

52Cr(n,n'1)

= 6.44 MeV

Anale (dearee)

60

Kinney, 1974 ENDF/B-VIII.0

80 100 120 140 160 180

52Cr(n,n'1)

Angle (degree)

40 60

Newly Evaluated Neutron Reaction Data on Chromium Isotopes

G.P.A. Nobre,^{1,*} M.T. Pigni,² D.A. Brown,¹ R. Capote,³ A. Trkov,⁴
K.H. Guber,² R. Arcilla,¹ J. Gutierrez,⁵ A. Cuadra,⁶ G. Arbanas,² and B. Kos⁴
¹National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA
²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³NAPC-Nuclear Data Section, International Atomic Energy Agency, A-1040 Vienna, Austria
⁴Jozef Stefan Institute, Jamova S9, 1000 Ljubljana, Slovenia
⁵Gonzaga University, Spokane, WA, USA
⁶Nuclear Systems & Structural Analysis Group, Brookhaven National Laboratory, Upton, NY 11973, USA

Summary

- New evaluated files for stable chromium isotopes represent a major improvement compared to existing files: Data agreement and Performance
- **Submitted** to ENDF/B library and IAEA for testing and distribution
- Article in final stages of preparation to be submitted to Nuclear Data Sheets
- Details and results of validation from criticality and leakage benchmarks will be presented tomorrow in the <u>Validation session</u>

Overall improvement in the agreement with experimental data when compared with ENDF/B-VIII.0

Newly Evaluated Neutron Reaction Data on Chromium Isotopes

G.P.A. Nobre,^{1,*} M.T. Pigni,² D.A. Brown,¹ R. Capote,³ A. Trkov,⁴
K.H. Guber,² R. Arcilla,¹ J. Gutierrez,⁵ A. Cuadra,⁶ G. Arbanas,² and B. Kos⁴
¹National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA
²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³NAPC-Nuclear Data Section, International Atomic Energy Agency, A-1040 Vienna, Austria
⁴Jozef Stefan Institute, Jamova S9, 1000 Ljubljana, Slovenia
⁵Gonzaga University, Spokane, WA, USA
⁶Nuclear Systems & Structural Analysis Group, Brookhaven National Laboratory, Upton, NY 11973, USA

Summary

- New evaluated files for stable chromium isotopes represent a major improvement compared to existing files: Data agreement and Performance
- Submitted to ENDF/B library and IAEA for testing and distribution
- Article in final stages of preparation to be submitted to Nuclear Data Sheets
- Details and results of validation from criticality and leakage benchmarks will be presented tomorrow in the <u>Validation session</u>

Overall improvement in the agreement with experimental data when compared with ENDF/B-VIII.0

Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The U.S. Department of Energy Nuclear Criticality Safety Program sponsored the work presented in this paper.