

UPDATES FROM IRSN

NUCLEAR DATA WEEK 30 NOVEMBER 2020 TO 4 DECEMBER 2020

L. Leal Institut de Radioprotection et de Sûreté* Nucléaire (IRSN) Service de neutronique et du risque de criticité (SNC) Fontenay-aux-Roses, 92260, France

Presentation Roadmap

- Criticality Safety Assessment
- Nuclear Data Evaluation at IRSN (short review)
- Concluding Remarks

Institut de Radioprotection et de Sûreté Nucléaire* - IRSN (Established on February 22, 2002 with a contingent workforce of about 1700 specialists)

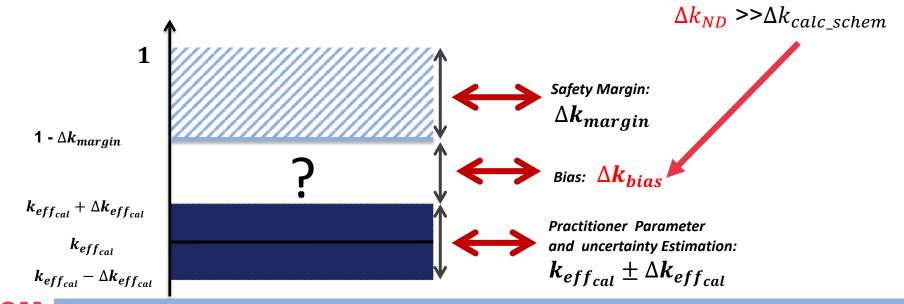
MISSIONS:

- Provide support for the public authorities in nuclear safety and radiation protection for civil and defense activities, and safety of nuclear facilities and materials...
- Make available an emergency response center that can be called in at all times, together with field response teams...
- Define and implement national and international research and study programs...
- Contribute to radiological monitoring of the national territory and workers exposed to ionizing radiation...
- Contribute to providing the public with information in the field of radiological and nuclear risks...

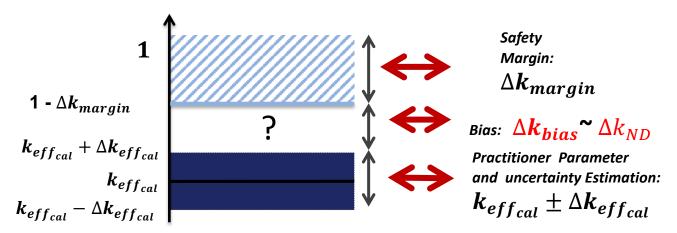
*Institute for Radiological Protection and Nuclear Safety

IRSI Nuclear Data Week – November 30 – December 4, 2020

Safety Parameter:


$$k_{eff}$$

Subcritical Limit Threshold

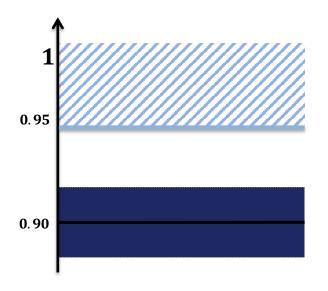

$$1 - \Delta k_{margin} - \Delta k_{bias} > k_{eff_{cal}} + \Delta k_{eff_{cal}}$$

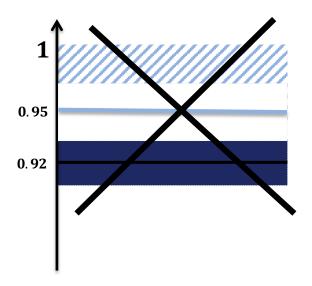
Assumption:

$$\Delta k_{bias} = \Delta k_{ND} + \Delta k_{calc_schem}$$

IRSN Nuclear Data Week – November 30 – December 4, 2020

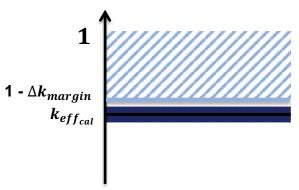
Parameters Values:


a) Δk_{margin} (common used values)


Normal configuration: 0.95 corresponding to 5000 pcm ($10^5 \times 0.05$) Where 1 pcm = percent mille (1 pcm = 10^5)

Abnormal configuration: 0.97 – 0.98 corresponding to 3000 to 2000 pcm

- **b**) $\Delta k_{eff_{cal}}$ (controlled quantity thru a Monte Carlo Calculation (MC)
- n_Sigma standard deviation in a MC. Values used is n=3 (in France)
- c) Δk_{bias} derived from differences of calculated K_{eff} and experimental K_{eff} , that is(C –E). This is where data measurement, evaluation, validation, uncertainty quantification play an extremely important role !!!


IRSN Nuclear Data Week – November 30 – December 4, 2020

Acceptable but not very efficient

Not acceptable

In this scenario the application $k_{eff}(k_{eff_{cal}})$ is very close to the k_{eff} corresponding to the safety margin $(1 - \Delta k_{margin})$. The nuclear data uncertainty will be such that:

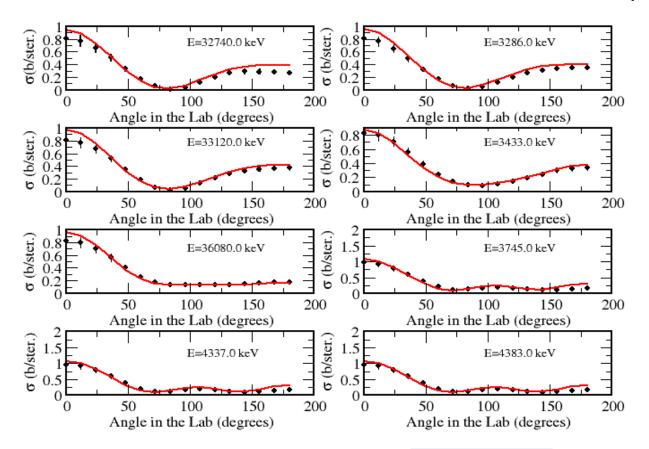
$$1 - \Delta k_{margin} = k_{eff_{cal}} + \Delta k_{bias} + \Delta k_{eff_{cal}}$$

IRSN Evaluation Work

- ¹⁵⁵Gd, ¹⁵⁷Gd: resolved resonance evaluation. Unresolved evaluation underway;
- ¹⁰³Rh: resolved resonance evaluation. Unresolved evaluation underway;
- ¹⁶O: resolved resonance evaluation: addition of new total and (n,alpha) measurements.
- ²³⁵U: resolved resonance evaluation. Further testing use update PFNS.

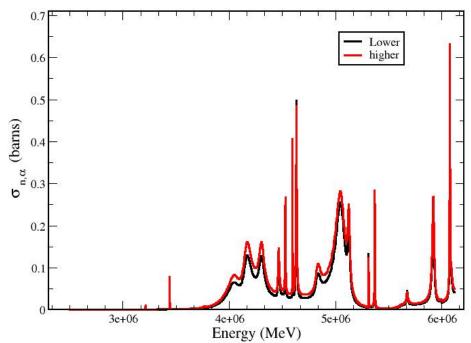
Note: Resonance parameter covariance available.

¹⁰³Rh Resonance Evaluation


Motivation:

- Issues with resonance spin representation (channel spin);
- Few capture data used on previous evaluations;
- Extension of the resonance region from 4 keV to 8 keV;
- R-matrix analysis (SAMMY/CONRAD);
- Transmission, capture data from GELINA used to extend the evaluation up to 8 keV;
- Uncertainty information and resonance parameter;
- Covariance generation.

¹⁶O Resonance Evaluation


Experimental Data	Flight-Path (meters)	Energy Range (MeV)	Data Reference	Year
Capture Cross Section	-	Thermal	Firestone	2015
Coherent Scattering Length	-	-	Sears	1992
Total Cross Section	79.46	2.0 – 6.3	ORELA (Larson)	1980
Total Cross Section	249.75	2.0 – 6.3	RPI (Danon) [14]	2015
Total Cross Section	41.0 and 47.0	0.6 – 4.3	ORNL Van de Graaff (Fowler, Johnson, and Feezel)	1973
Total Cross Section	189.25	3.14 – 6.3	KFK cyclotron (Cierjacks)	1980
(n,alpha) extracted from (alpha,n)	-	3.2 – 6.3	ORNL Van de Graaff (Bair and Hass)	1973
(n,alpha) extracted from (alpha,n)	-	3.0 – 6.3	Tandem Accelerator Universtät Bochum (Harissopulos)	2005

Fits of the ¹⁶O differential elastic cross section of Lister and Sayers

Issues with experimental (n,α) cross-section

¹⁶O(n, a) data (Giorginis, et al., IRMM) and ¹³C(a, n) data (Harissopulos, et al.) give about 30% lower ¹⁶O (n, a) cross section values than the Bair-Haas

Task underway:

- New transmission data from HZDR
- Review of (n,α)

²³⁵U Resonance Evaluation

Improving Thermal Benchmark Performance;

Adjustment of the fission thermal crosssection according to suggested standard values;

²³⁵U Thermal Values

Quantity	« Standard »	JEFF3.3 (barns)	²³⁵ U (Rev) (barns)
σ _{f (barns)}	586.4 ± 1.5	584.44	586.44
σγ _(barns)	99.1 ± 2.1	99.62	99.12
σ _{s (barns)}	14.03 ± 0.22	14.088	14.076
V	2.4257 ± 0.0047	2.4254	2.4254
K1	-	717.58	720.85

work underway

- ¹⁹F: resolved resonance evaluation;
- Thermal scattering for HF; (Vaibhav Jaiswal)
- 95Mo, 96Mo: resolved resonance evaluation. (Nicolas Leclaire)
- ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe: resolved resonance evaluation (angular data fitting);
- ²⁰⁷Pb, ²⁰⁸Pb : resolved resonance evaluation;
- ²³³U: resolved + unresolved resonance evaluations (extension to 2 keV);
- ²³⁹Pu: resolved resonance evaluation (RR extended to 4 keV);
- Thermal scattering for light water and ice (SNS data); (Vaibhav Jaiswal)
- New approach for resonance evaluation when only few experimental data are known (unstable and short-lived isotopes);

IRSN Nuclear Data Week – November 30 – December 4, 2020

Concluding Remarks

- □ IRSN/SNC has worked on data evaluation for internal and external uses. The evaluations include uncertainties;
- □ IRSN evaluations will be available for inclusion in the data projects;
- □ New methodologies and approach being developed at IRSN/SNC: New processing capability for URR, approach for unstable and short-lived isotope evaluation, etc.
- □ New generation of nuclear data evaluators trained at IRSN;