NEXUS

A platform for the next-generation of nuclear data evaluations

Neatures:

Bayesian Optimization • Version Control • Modularized with Containers • Python 3+

- Los Alamos

NATIONAL LABORATORY

- EsT. 1943

LA-UR-20-29759

MATTHEW MUMPOWER
Theoretical Division

Mike Herman, Toshihiko Kawano,
Amy Lovell, Ionel Stetcu, Patrick Talou

NATIONAL LABORATORY
EST. 1943

LOS ALAMOS NATIONAL LABORATORY CAVEAT
The submitted materials have been authored by an employee or employees of Triad National Security, LLC
(Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royaltyfree license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes.

EXAMPLE EVALUATION WORKFLOW

Primary Yields
Theory
MicMac, DRW, DPS

Monte Carlo De-excitation
Fission event gen. (CGMF)

Applications
Time Dependent PRISM

Yields e.g. for reactor antineutrinos

NEXUS

Our current workflow combines many distinct codes and data
The problem: we need to integrate all of these interrelated parts together

NEXUS provides
code structures and marshalling that allow theory, data and evaluation to seemlessly communicate

PU SUITE EVALUATION

Focus on consistency in evaluating all reaction channels together

Figure: ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$ cross section. Regularization procedure maps model to experimental data (red \rightarrow blue)
Parsed ENDF, EXFOR, ran reaction model, optimized model parameters all with less than 50 lines of Python3 code!

WHAT'S NEW?

Focus on consistency throughout evaluation

Figure: Bayesian opt. of optical model parameters with the NEXUS code

