FissionTPC Cross Section Ratio Results and Their Impact

$^{239}\text{Pu}(n,f)/^{235}\text{U}(n,f)$

CSWEG
Dec. 1, 2020

Lucas Snyder & Gregorio Potel
Publications

Measurements of the normalized 238U(n,f)/235U(n,f) cross section ratio form threshold to 30 MeV …

- **R. Casperson, et al.**
 - *PRC* 97, 034618 (2018)

Fission Fragment Angular Anisotropy in Neutron-Induced Fission of 235U …

- **V. Geppert-Kleinrath, et al.**

Measurement of 235U Anisotropy and Linear Momentum Transfer.

- **D. Hensle, et al.**
 - *PRC* 102, 014605 (2020)

The fissionTPC…

- **M. Heffner, et al.**
 - *NIM A* 759 (2014) 50-64
Outline

- Part I: FissionTPC data analysis
 - Cross section *shape* analysis & validations presented
 - Efficiency and Nonuniformity in target & beam corrections
 - Status of absolute normalization discussed

- Part II: GMA Data Fit
 - We are assessing the impact of the new ratio measurement.
Quantities measured by the fissionTPC

- Neutron time-of-flight measured
- 3D ionization profile for individual tracks provides:
 - Track length
 - Total energy
 - Track direction
 - Bragg Peak
 - Interaction vertex
Parameterized model incorporating energy loss effects for fission fragments exiting target material

- Energy-Angle data is fit
- Recent inclusion of FREYA code and Geant4 in model
- Validation of earlier data-driven only model
Neutron Flux Profile & Target Overlap

Correction required if beam and actinide target have spatial non-uniformity

\[\frac{\sum_{XY} \phi_{s,i} \cdot n_{s,i}}{\sum_{XY} \phi_{x,i} \cdot n_{x,i}} = 1 \neq \frac{\sum_{XY} (\phi_{s,i} \cdot n_{s,i})}{\sum_{XY} (\phi_{x,i} \cdot n_{x,i})} \]

Fragments (data) Alphas (data) FF/alpha (data)

Pu-239

Pu-239

\[\text{OT} = \text{Overlap Term} \]
\[= B \sum_i \frac{n_i}{\sum_j n_j \sum_k T_k} \]
\[= B \frac{1}{\sum_j n_j \sum_k T_k} \sum_i n_i T_i \]
\[\text{OT}^{Pu} = \frac{1}{\sum_k \alpha_{Pu}^{f'}} \sum_j \frac{f_j^{Pu}}{\alpha_j} \sum_i l_i \]
\[\text{OT}^{U} = \frac{1}{\sum_i \alpha_i^{f'}} \sum_j f_j \]

Data driven correction
“U-corrected Pu-overlap term”

Dot product

Before Rotation After Rotation

Overlap Correction Factor

0.3 0.4 1 2 3 4 5 6 7 8 9 10 20

1.08 1.07 1.06 1.05 1.04 1.03 1.02
Validations and Sensitivity Studies

- **Rotation of fissionTPC**
 - Flips beam and target non-uniformity

- **XY-binned cross section**
 - Make measurement in small bins where beam is relatively uniform
 - Requires rescaling of each bin target normalization ratio

- **Radial cuts**
 - Has large effect on overlap correction

- **Tracking sensitivity studies**
 - Tracking bias, resolution
 - Target alignment
 - Space charge distortion

- **Normalization Validation**
 - Remeasure target-atom normalization
 - Remeasure cross section ratio (future work)
Rotation Validation

Flip beam:
- Direction alters alignment of beam and target hotspot
- Kinematic boost alters efficiency
Rotation Validation

- Significant, 3-4 % change in efficiency and overlap terms
- Effects both shape and overall normalization
- Strong validation
“Before” and “After” rotation cross section ratios agree
Binned Cross Section Analysis

- Average many cross section ratios binned such that the beam and/or target are uniform
- Each one renormalized
- Methods agree
Target Atom Normalization

- A combination of a Si detector and mass spectrometry were used to determine the target atom normalization
- Si det. design based on NIST prescription
Target Atom Normalization Validation

- Results are reported as a ratio of target atom number, to eliminate the need to have a precision understanding of the Si detector setup geometry
- Method depends on Mass Spec. to get a final answer
- **Mass spec.** measurements made *multiple times from multiple samples* over multiple years
- **Target counting measured** in detector *multiple times*
- **Target counting analysis** was performed independently at **LANL/LLNL**
- Absolute alpha counting in fissionTPC not accurate enough currently
Normalization Compared to ENDF8

- Significant systematic deviation from ENDF
- This is *not* the collaboration’s stated position
Comparison to Data

- Deviation with other data is consistent with ENDF
- Larger deviations between all data at higher energies
PART I: Summary

- We are confident of the Cross Section Shape Measurement
- Two obvious concerns:
 - Is the overlap handled correctly?
 - Is the measurement of the target normalization correct?
- Validations Performed:
 - Rotation & radial cuts have significant effects on overlap and efficiency. *They are strong validations*
 - Two methods for nonuniformity correction agree
 - Target was remeasured and reanalyzed by multiple teams
 - Target was counted in Silicon detector *only after* beam data was collected. It is possible that it was damaged. This would have had no effect on the cross section measurement
- We will remeasure for normalization
- Next Steps:
 - Now capable of vapor deposition of 239Pu
 - Characterize target before and after a new beam measurement
 - At this point we intend to publish recommended as shape data but will include our normalization work
Impact of the new data

Step 1

Establish our best experimental knowledge of 239Pu(n,f) with a GMA evaluation.

Step 2

Fit parameters of a physical model for the simultaneous evaluation of 239Pu(n,f) and other related observables.
239Pu(n,f) needs revisiting

Step 1

Establish our *best experimental* knowledge of 239Pu(n,f) with a **GMA evaluation**.
The GMA database: types of data

Table 2. Data Types Used in the Simultaneous Evaluation

<table>
<thead>
<tr>
<th>MT</th>
<th>Data Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absolute cross section</td>
<td>$\sigma_{n,t}^{(235\text{U})}$</td>
</tr>
<tr>
<td>2</td>
<td>Cross section shape</td>
<td>$c \cdot \sigma_{n,t}^{(6\text{Li})}$, c unknown</td>
</tr>
<tr>
<td>3</td>
<td>Absolute cross section ratio</td>
<td>$\sigma_{n,t}^{(238\text{U})}/\sigma_{n,t}^{(235\text{U})}$</td>
</tr>
<tr>
<td>4</td>
<td>Ratio shape</td>
<td>$c \cdot \sigma_{n,t}^{(239\text{Pu})}/\sigma_{n,t}^{(6\text{Li})}$, c unknown</td>
</tr>
<tr>
<td>5</td>
<td>Sum of cross sections</td>
<td>$\sigma_{\text{tot}}^{(6\text{Li})} = \sigma_{n,n}^{(6\text{Li})} + \sigma_{n,x}^{(6\text{Li})}$</td>
</tr>
<tr>
<td>6</td>
<td>Spectrum averaged cross section</td>
<td>$\sigma_{n,t}^{(239\text{Pu})}$, Av. ^{252}Cf SF</td>
</tr>
<tr>
<td>7</td>
<td>Absolute ratio of cross section vs. sum of cross sections</td>
<td>$\sigma_{n,t}^{(238\text{U})}/\sigma_{n,\alpha}^{(10\text{B})}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma_{n,\alpha} = \sigma_{n,\alpha 0} + \sigma_{n,\alpha 1}$</td>
</tr>
<tr>
<td>8</td>
<td>Shape of type 5 data</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Shape of type 7 data</td>
<td></td>
</tr>
</tbody>
</table>

The GMA (Gauss-Markov-Aitken) equations

- Generalized least-squares.
- Assumes normal distribution of random variables.
- Linearization close to most probable value.
- Linear algebra problem, good numerical implementation.

\[p = \left(A^T V_y^{-1} A \right)^{-1} A^T V_y^{-1} y \]
\[V_p = \left(A^T V_y^{-1} A \right)^{-1} \]

best parameters
best covariances
measured covariances
measured parameters
design matrix
evaluation
GMA at work: implementation of GMA equations for $^{239}\text{Pu}(n,f)$

$^{239}\text{Pu}(n,f)$ data in the GMA October 2004 database
GMA at work: implementation of GMA equations for 239Pu(n,f) after the application of the GMA equations, best experimental values, errors, and covariances for 239Pu(n,f) are obtained.
Combining the TPC data with the GMA database

$^{239}\text{Pu} \ (n,f)$
Combining the TPC data with the GMA database: converting to shape data

\[
\sigma (b) = \begin{cases}
\text{with TPC data (shape)} \\
\text{without TPC data}
\end{cases}
\]

\(^{239}\text{Pu}(n,f)\)
Combining the TPC data with the GMA database

Ratio of values with TPC data /without TPC data

239Pu(n,f) ratio of values with/without TPC

- Absolute
- Shape

Ratio of errors with TPC data /without TPC data

239Pu(n,f) ratio of errors with/without TPC

- Absolute
- Shape

E (MeV)
Part II: Summary

- We are assessing the impact of the new ratio measurement.
- As a first step, we presented here the GMA evaluation, which establishes the status of our experimental knowledge of 239Pu(n,f) cross sections, uncertainties, and covariances.
- Next step: fit of the physical parameters of a Hauser-Feshbach+Coupled Channels model of reaction and decay work in progress.
Backup
Motivation: Spread in 239Pu(n,f)/235U(n,f) data does not justify a 1% evaluation
Background terms

- Recoil and alpha backgrounds (C_r, C_α) found to be negligible, i.e. TPC has good PID capabilities
- Any uncertainty from this assumption accounted for in efficiency model
- Wraparound corrected for with standard methods
Contamination correction

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atom %</th>
<th>Alpha Activity (%)</th>
<th>Overlapping with peak of interest (POI)?</th>
<th>Fission Cross-Section at 10 MeV</th>
<th>Fission Yield at 10 MeV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{233}U</td>
<td>0.01862</td>
<td>29.1</td>
<td>No</td>
<td>2.25</td>
<td>0.024</td>
</tr>
<tr>
<td>^{234}U</td>
<td>0.03448</td>
<td>34.4</td>
<td>No</td>
<td>2.16</td>
<td>0.042</td>
</tr>
<tr>
<td>^{235}U</td>
<td>99.6767</td>
<td>34.7</td>
<td>POI</td>
<td>1.76</td>
<td>99.7</td>
</tr>
<tr>
<td>^{236}U</td>
<td>0.17009</td>
<td>1.78</td>
<td>Yes</td>
<td>1.53</td>
<td>0.15</td>
</tr>
<tr>
<td>^{238}U</td>
<td>0.09984</td>
<td>0.00548</td>
<td>Yes</td>
<td>1.00</td>
<td>0.057</td>
</tr>
<tr>
<td>^{235}Pu</td>
<td>0.0002</td>
<td>0.84</td>
<td>Yes</td>
<td>2.82</td>
<td>0.00025</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>99.1323</td>
<td>95.97</td>
<td>POI</td>
<td>2.24</td>
<td>99.1</td>
</tr>
<tr>
<td>^{240}Pu</td>
<td>0.8675</td>
<td>3.19</td>
<td>Yes</td>
<td>2.24</td>
<td>0.87</td>
</tr>
<tr>
<td>^{241}Pu</td>
<td><0.0015</td>
<td><0.00001</td>
<td>Yes</td>
<td>1.99</td>
<td><0.0013</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>0.00242</td>
<td>0.00016</td>
<td>No</td>
<td>1.92</td>
<td>0.00021</td>
</tr>
</tbody>
</table>

Table 2: Isotopes and effects on cross-section measurement.
Detailed MCNP model gives neutron flux spatial profile for both actinide targets, as a function of neutron energy

- Proton beam energy loss in the spallation target results in a non-uniform neutron beam profile
- Importantly, the spatial profile varies with neutron energy (at the TPC)

We use the MCNP model to account for:
- flux attenuation in the target backing
- scattering (change in energy) between TOF measurement and fission initiation
Radius Cut Validation

- Aggregate shape changes
- Target Edge alignment constitutes large nonuniformity
- Large impact on the overlap term and target renormalization (1mm rad. cut \(\rightarrow \sim 7\%\) change normalization)
FissionTPC Padplane Alignment Sensitivity

- Misalignment of padplanes could cause an apparent misalignment of the targets (reconstructed vs. real)

- Beam induced events with enough energy to “punch-through” the central cathode are used to determine the alignment

- Potential misalignment of up to 200 µm expected as a result of construction technique
- Tracking algorithm is “focused” to eliminate hexagonal biasing of track vertices
- There is a polar angle dependence such that the average is un-biased but some angle ranges make it more apparent
Pointing Resolution and Bin Size

- Tracking resolution is \(~300 \mu m\)
- Overlap term has normalization some sensitivity to bin size
- Edge of target represent large nonuniformity
Tracking Studies Summary

- Normalization Sensitivities up to 1%
- Tracking effects on overlap all corrected for. Uncertainties < 1%
- No effect on shape
FissionTPC Future

- Advanced, well characterized instrument
- X(n,cp)Y measurement
- XS, Angle, A/Z, multi-particle
- Workshop March 2018
- Identified 6Li(n,t)a