FissionTPC Cross Section Ratio Results and Their Impact

²³⁹Pu(n,f)/²³⁵U(n,f)

CSWEG Dec. 1, 2020

Lucas Snyder & Gregorio Potel

LLNL-PRES-816946

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Publications

Outline

- Part I: FissionTPC data analysis
 - Cross section shape analysis & validations presented
 - Efficiency and Nonuniformity in target & beam corrections
 - Status of absolute normalization discussed
- Part II: GMA Data Fit
 - We are assessing the impact of the new ratio measurement.

Quantities measured by the fissionTPC

- Neutron time-of-flight measured
- 3D ionization profile for individual tracks provides:
 - Track length
 - Total energy
 - Track direction
 - Bragg Peak
 - Interaction vertex

Fission Fragment Efficiency PRC 97, 034618 (2018)

- Parameterized model incorporating energy loss effects for fission fragments exiting target material
- Energy-Angle data is fit
- Recent inclusion of FREYA code and Geant4 in model
- Validation of earlier data-driven only model

 $(\phi_{s,i} \cdot n_{s,i})$

 w_x^-

Neutron Flux Profile & Target Overlap

Correction required if beam *and* actinide target have spatial non-uniformity

Data driven correction "U-corrected Pu-overlap term"

LLNL-PRES-816946

 $\frac{\sigma_x}{\sigma_s} = \frac{\epsilon_{ff}^s}{\epsilon_{ff}^x} \cdot \frac{\Phi_s}{\Phi_x} \cdot \frac{N_s}{N_x} \underbrace{\sum_{XY}(\phi_{s,i} \cdot n_{s,i})}_{XY}(\phi_{x,i} \cdot n_{x,i})} \cdot \frac{w_x^{-1}}{w_s^{-1}} \cdot \frac{(C_{ff}^x - C_r^x - C_\alpha^x) - C_{bb}^x}{(C_{ff}^s - C_r^s - C_\alpha^s) - C_{bb}^s}$

$$\frac{\sum_{XY} \phi_{s,i} \cdot \sum_{XY} n_{s,i}}{\sum_{XY} \phi_{x,i} \cdot \sum_{XY} n_{x,i}} = 1 \neq \frac{\sum_{XY} (\phi_{s,i} \cdot n_{s,i})}{\sum_{XY} (\phi_{x,i} \cdot n_{x,i})}$$

Validations and Sensitivity Studies

Rotation of fissionTPC

Flips beam and target non-uniformity

XY-binned cross section

- Make measurement in small bins where beam is relatively uniform
- Requires rescaling of each bin target normalization ratio

Radial cuts

Has large effect on overlap correction

Tracking sensitivity studies

- Tracking bias, resolution
- Target alignment
- Space charge distortion

Normalization Validation

- Remeasure target-atom normalization
- Remeasure cross section ratio (future work)

Rotation Validation

Flip beam:

- Direction alters alignment of beam and target hotspot
- Kinematic boost alters efficiency

8

Rotation Validation

- Significant, 3-4 % change in efficiency and overlap terms
- Effects both shape and overall normalization
- Strong validation

Rotation Validation

"Before" and "After" rotation cross section ratios agree

Binned Cross Section Analysis

- Average many cross section ratios binned such that the beam and/or target are uniform
- Each one renormalized
- Methods agree

Target Atom Normalization

- A combination of a Si detector and mass spectrometry were used to determine the target atom normalization
- Si det. design based on NIST prescription

 $_{XY}(\phi_{s,i} \cdot n_{s,i})$

 $(\phi_{x,i} \cdot n_{x,i})$

 $\frac{N_s}{N_x}$

 $\cdot \frac{w_x^{-1}}{w_s^{-1}} \cdot$

Target Atom Normalization Validation

- Results are reported as a ratio of target atom number, to eliminate the need to have a precision understanding of the Si detector setup geometry
- Method depends on Mass Spec. to get a final answer
- Mass spec. measurements made multiple times from multiple samples over multiple years
- Target counting measured in detector multiple times
- Target counting analysis was performed independently at LANL/LLNL
- Absolute alpha counting in fissionTPC not accurate enough currently

Normalization Compared to ENDF8

- Significant systematic deviation from ENDF
- This is not the collaboration's stated position

Comparison to Data

- Deviation with other data is consistent with ENDF
- Larger deviations between all data at higher energies

PART I: Summary

We are confident of the Cross Section Shape Measurement

Two obvious concerns:

- Is the overlap handled correctly?
- Is the measurement of the target normalization correct?

Validations Performed:

- Rotation & radial cuts have significant effects on overlap and efficiency. They are strong validations
- Two methods for nonuniformity correction agree
- Target was remeasured and reanalyzed by multiple teams
- Target was counted in Silicon detector *only after* beam data was collected. It is possible that it was damaged. This would have had no effect on the cross section measurement

We will remeasure for normalization

Next Steps:

- Now capable of vapor deposition of ²³⁹Pu
- Characterize target before and after a new beam measurement
- At this point we intend to publish recommended as *shape data* but will include our normalization work

Impact of the new data

Step 1

Establish our best experimental knowledge of ²³⁹Pu(n,f) with a GMA evaluation.

Step 2

Fit parameters of a physical model for the simultaneous evaluation of ²³⁹Pu(n,f) and other related observables.

²³⁹Pu(n,f) needs revisiting

Step 1

Establish our best experimental knowledge of ²³⁹Pu(n,f) with a GMA evaluation.

The GMA database: types of data

Table 2. Data Types Used in the Simultaneous Evaluation

MT	Data Type	Example	
1	Absolute cross section	$\sigma_{n,f}^{(235}U)$	
2	Cross section shape	$c \sigma_{n,\alpha}$ (⁶ Li), c unknown	
3	Absolute cross section ratio	$\sigma_{n,f}(^{238}U)/\sigma_{n,f}(^{235}U)$	
4	Ratio shape	c·σ _{n,f} (²³⁹ Pu)/σ _{n,α} (⁶ Li) c unknown	
5	Sum of cross sections	$\sigma_{tot}(^{6}Li) = \sigma_{n,n}(^{6}Li) + \sigma_{n,n}(^{6}Li)$	
6	Spectrum averaged cross section	$\sigma_{n.f}^{(239}$ Pu), Av. ²⁵² Cf SF	
7	Absolute ratio of cross section vs. sum of cross sections	$\sigma_{n,\gamma}(^{238}\text{U})/\sigma_{n,\alpha}(^{10}\text{B})$ $\sigma_{n,\alpha} = \sigma_{n,\alpha0} + \sigma_{n,\alpha1}$	
8	Shape of type 5 data		
9	Shape of type 7 data		

From W. Poenitz and S. Aumeier Argonne National Laboratory Report ANL/NDM-139, (1997)

19

The GMA (Gauss-Markov-Aitken) equations

- Generalized least-squares.
- Assumes normal distribution of random variables.
- Linearization close to most probable value.
- Linear algebra problem, good numerical implementation.

20

GMA at work: implementation of GMA equations for ²³⁹Pu(n,f)

²³⁹Pu(n,f) data in the GMA October 2004 database

GMA at work: implementation of GMA equations for ²³⁹Pu(n,f)

22

Combining the TPC data with the GMA database

Combining the TPC data with the GMA database: converting to shape data

Combining the TPC data with the GMA database

Ratio of values with TPC data /without TPC data

Ratio of errors with TPC data /without TPC data

Lawrence Livermore National Laboratory

- We are assessing the impact of the new ratio measurement.
- As a first step, we presented here the GMA evaluation, which establishes the status of our experimental knowledge of ²³⁹Pu(n,f) cross sections, uncertainties, and covariances.
- Next step: fit of the physical parameters of a Hauser-Feshbach+Coupled Channels model of reaction and decay — work in progress.

Backup

Lawrence Livermore National Laboratory

Motivation: Spread in ²³⁹Pu(n,f)/²³⁵U(n,f) data does not justify a 1% evaluation

Background terms

- Recoil and alpha backgrounds (C_r, C_α) found to be negligible, i.e. TPC has good PID capabilities
- Any uncertainty from this assumption accounted for in efficiency model
- Wraparound corrected for with standard methods

 $\sum_{XY} (\phi_{s,i} \cdot n_{s,i})$

 $\frac{w_x^{-1}}{w_s^{-1}}$

Lawrence Livermore National Laboratory

Contamination correction

Isotope	Atom %	Alpha Activity	Overlapping	Fission Cross-	Fission Yield
		(%)	with peak	Section at	at 10 MeV (%)
			of interest	$10 { m MeV}$	
			(POI)?		
^{233}U	.018862	29.1	No	2.25	0.024
$^{234}\mathrm{U}$.03448	34.4	No	2.16	0.042
$^{235}\mathrm{U}$	99.6767	34.7	POI	1.76	99.7
$^{236}\mathrm{U}$	0.17009	1.78	Yes	1.53	0.15
$^{238}\mathrm{U}$	0.09984	0.00548	Yes	1.00	0.057
²³⁸ Pu	0.0002	0.84	Yes	2.82	0.00025
²³⁹ Pu	99.1323	95.97	POI	2.24	99.1
²⁴⁰ Pu	0.8675	3.19	Yes	2.24	0.87
241 Pu	< 0.0015	< 0.00001	Yes	1.99	< 0.0013
242 Pu	0.00242	0.00016	No	1.92	0.00021

Table 2: Isotopics and effects on cross-section measurement.

Lawrence Livermore National Laboratory

Neutron Flux Profile & Attenuation

Detailed MCNP model gives neutron flux spatial profile for both actinide targets, as a function of neutron energy

Proton beam energy loss in the spallation target results in a nonuniform neutron beam profile

 $\frac{\Phi_s}{\Phi_x}$

Importantly, the spatial profile varies with neutron energy (at the TPC)

neutror

 $_{VV}(\phi_{s,i} \cdot n_{s,i})$

Tungsten

Target

 w_{x}^{-1}

Proton

Beam

We use the MCNP model to account for:

- flux attenuation in the target backing
- scattering (change in energy) between TOF measurement and fission initiation

Radius Cut Validation

- Aggregate shape changes
- Target Edge alignment constitutes large nonuniformity
- Large impact on the overlap term and target renormalization

(1mm rad. cut -> ~7% change normalization)

32

FissionTPC Padplane Alignment Sensitivity

- Misalignment of padplanes could cause an apparent misalignment of the targets (reconstructed vs. real)
- Beam induced events with enough energy to "punch-through" the central cathode are used to determine the alignment
- Potential misalignment of up to 200 µm expected as a result of construction technique

Track Bias Sensitivity

- Tracking algorithm is "focused" to eliminate hexagonal biasing of track vertices
- There is a polar angle dependence such that the average is un-biased but some angle ranges make it mare apparent

- Tracking resolution is ~300 μm
- Overlap term has normalization some sensitivity to bin size
- Edge of target represent large nonuniformity

- Normalization Sensitivities up to 1%
- Tracking effects on overlap all corrected for. Uncertainties < 1%
- No effect on shape

FissionTPC Future

- Advanced, well characterized instrument
- X(n,cp)Y measurement
- XS, Angle, A/Z, multi-particle
- Workshop March 2018
 Identified 6Li(n,t)a

