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Nuclear Fission Process
Experimental measurements of fission data is constrained by 
timescales of the various phases of the process
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Deexcitation of Fission Fragments
Comparison with measurements require simulating the decay 
of the fission fragment from immediately after scission
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● Statistical reaction theory code give fission properties
● Required inputs (as a function of excitation energy of compound 

nucleus)
– Z, N, relative probabilities (=yields) Y(Z,N)
– For given Z,N

● Excitation energy E*
● Spin distribution p(J) 
● Level density
● Gamma strength functions
● (Beta-decay rates)

● Measurable observables
– Charge and mass yields
– Neutrons and photons: multiplicities, average energies, angular 

correlations
– Beta-decay: rates, branching ratios
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Predictions versus Postdictions
The large number of inputs and lack of experimental constraints 
require both predictive models and ML/AI techniques
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● Strategies: 
– Use inputs as adjustable parameters (possibly constrained by experimental 

measurements) to reproduce fission spectrum ex post
● Provides leverage for very precise calibration of nuclear data
● Number of parameters is large
● Advanced statistical methods (ML/AI) help only so much

– Use theoretical models (fission, decay, structure) to compute some of 
these quantities

● Provides reliable trends where measurements are missing
● Eliminates several empirical parameters and improves consistency
● Precision is not good enough

● Recent progress in fundamental nuclear theory enabled by HPC
– Particle number projection of Z,N in fragments: odd-even effect
– Angular momentum projection techniques: spin distributions
– Real-time evolution of fissioning nucleus: fragment excitation energy
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Number of Particles in Fission Fragments
Particle number projection techniques are key to reproducing 
the odd-even effect of charge distributions
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● All models of fission (statistical scission 
point model, semi-classical dynamics, 
quantum-mechanical approaches) 
– Describe fission as a deformation process
– Obtain proton and neutron numbers by 

mapping them to a given deformed shape
● Mapping methods:

– Standard approach
● Numbers of particle = integrals of the density 

left and right of the neck
● Non-integer values

– Particle number projection 
● Use in nuclear structure theory to restore 

particle number in superfluid systems
● Adapted in 2019 to quantify dispersion of 

particle number for scission configurations
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Fission Fragment Distributions
Particle number projection improve the fidelity of fission models 
to describe charge distributions
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● Semi-classical random walk 
on macro-micro PES

● Quantum-mechanical evolution 
with the time-dependent 
generator coordinate method

M. Verriere, M. Mumpower arXiv:2008.06639 
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PNP can produce odd-even effects without the need of adjustable parameters

M. Verriere, N. Schunck, D. Regnier, In preparation 
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● Same projection techniques 
used for particle number can be 
extended to angular momentum

● Angular momentum for the 
fragment

Spin Distributions
The prompt photon spectrum is extremely sensitive to the spin 
distribution of the fission fragments
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● Traditional approach is based on semi-empirical formula 

where I  is the moment of inertia for the fragment (Z,N) at its 
excitation energy
– Proper calculation of I  requires advanced nuclear structure model
– Alternative is to consider it as adjustable parameter
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Microscropic Spin Distributions
Angular momentum projection provides spin distributions 
consistent with fragment deformations
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● Spin distribution is heavily correlated 
with fission fragment deformation
– More deformed  broader distribution⇒
– Parity distribution automatically determined

● Good agreement with FREYA results for 
neck sizes around 2-3
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AMP results are sensitive to definition of scission configurations – like most other data

Number of particles 
in the neck

Number of particles 
in the neck ~ 4.5

P. Marevic, N. Schunck, et al, In preparation 
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Excitation Energy
Time-dependent DFT provides rigorous framework to extract 
excitation energy of fission fragments
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● “Adiabatic” methods based on 
precomputing a potential energy 
surfaces give only lowest energy at 
given deformation
– “cold” fragments
– Excitation energy has to be introduced 

by hand
● TDDFT is a real-time evolution of 

the nuclear shape 
– Initial condition near the saddle
– Energy is conserved throughout

● Initial energy of compound nucleus 
becomes excitation energy and is 
distributed to fission fragments 
based on nuclear forces
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Energy Sharing
Total excitation energy and energy balance replaced by explicit, 
parameter-free values of fragment excitation energy
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● Direct access to excitation energy of each fragment
● No need to specify energy sharing mechanism: nuclear forces do it 

for you...
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Challenge is to extend this technique to all scission configurations
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Conclusions
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● Fission spectrum depends on initial conditions of fission fragments 
just after scission
– Inaccessible by direct experimental measurements for the most part
– Come from theoretical models 

● Microscopic methods are useful baselines upon which to build 
evaluations
– Particle number projection leads naturally to odd-even effects
– Angular momentum projection gives spin- and parity-distribution 

consistent with fragment deformation
– Time-dependent density functional theory provides framework to extract 

excitation energy
● These tools can be combined with one another, and with 

empirical corrections 
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