Correcting a few anomalously large Cumulative Fission Yield uncertainties in ENDF/B-VIII. 0

A. Mattera, A.A. Sonzogni

National Nuclear Data Center

Background

With ENDF/B-VI.8, a new decay data sublibrary was introduced

To ensure consistency, the FY sublibrary was updated to include the changes in the decay

The introduction of new isomers in the decay data sublibrary required Isomeric Yield Ratios to be assigned, and the Cumulative Yields to be recalculated based on the new decay schemes

Background

The update caused the uncertainties for some end-of-chain CYs to increase dramatically
(up to 180 times the value in the older version of the library)

End-of-chain (nearly stable) CYs are generally experimentally well determined and their uncertainty is comparable or better than the shorter-lived nuclides in the chain

Correction of CYs

We identified 8 mass chains where the uncertainty was anomalously large, and re-calculated it for 15 fission products

The dCY in ENDF/B-VIII. 0 reflects the uncertainty on the IYR (50\%), but the dCYs of ${ }^{90} Y_{G S}$ and ${ }^{90} \mathrm{Zr}_{G S}$ do not depend on their isomeric yield ratios (the IS decay by IT to the GS), and the largest contribution is from decay of precursors

Correction of CYs and IYs

In A = 109, we also removed isomers for ${ }^{109} \mathrm{Ru}$ and ${ }^{109} \mathrm{Rh}$, that were added in ENDF/B-VI.0, but not confirmed in measurements since

The IY of ${ }^{109 \mathrm{~m}} \mathrm{Ru}$ and ${ }^{109 \mathrm{~m}} \mathrm{Rh}$ was reassigned to the GS, and the uncertainties of the nuclides along the decay chain were re-calculated accordingly.

Validation

The total energy released in fission, including betadelayed terms, is given by

$$
\begin{equation*}
E=M_{t}-\left(\bar{\nu}_{t}-1\right) M_{n}-\sum C F Y_{k} M_{k} \tag{21}
\end{equation*}
$$

where sum is performed over the most neutron rich stable nuclides for each A value.
M_{t} : Target mass excess,
$\bar{\nu}_{t}$: Total nu-bar,
M_{n} : Neutron mass excess,
$C F Y_{k}$: Cumulative fission yield (chain yield),
M_{k} : mass excess.

Of particular interest is the term given by

$$
\begin{equation*}
Y=\sum C F Y_{k} M_{k} \tag{22}
\end{equation*}
$$

whose uncertainty will be calculated using the scheme developed by Kopeikin.
V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. 67, 1892 (2004).

Library	${ }^{235} \mathrm{U}$	${ }^{238} \mathrm{U}$	${ }^{239} \mathrm{Pu}$	${ }^{241} \mathrm{Pu}$
JEFF-3.3	-173.155 ± 0.076	-173.047 ± 0.298	-173.585 ± 0.115	-173.523 ± 0.240
ENDF/B-VIII.0	-173.125 ± 0.943	-173.225 ± 0.585	-173.676 ± 0.417	-173.552 ± 0.410
ENDF/B-VIII.0 Mod.	-173.137 ± 0.039	-173.218 ± 0.081	-173.694 ± 0.073	-173.547 ± 0.092
Kopeikin (England \& Rider)	-173.43 ± 0.05	-173.39 ± 0.10	-173.87 ± 0.07	-173.82 ± 0.10

TABLE X. Y and ΔY values.

Summary

- The FY uncertainty values for 18 Fission Products and all spontaneous fission (SFY) and neutron-induced (NFY) materials was corrected
- We pushed changes to the git repository of ENDF/B-VIII at the end of September 2020.

235-U	Energy $=2.53 \mathrm{E}-2$			
Nuclide	Quantity	Current Value	Updated Value	$\begin{gathered} \text { Ratio } \\ \text { (new/old) } \end{gathered}$
${ }^{90} \mathrm{Y}$ GS	$\triangle \mathrm{CFY}$	$3.7004 \mathrm{E}-2$	$5.7819 \mathrm{E}-4$	6.4000 E 1
${ }^{90} \mathrm{Zr} \mathrm{GS}$	$\triangle \mathrm{CFY}$	$3.7004 \mathrm{E}-2$	$5.7819 \mathrm{E}-4$	6.4000 E 1
${ }^{91} \mathrm{Y}$ GS	\triangle CFY	$3.7298 \mathrm{E}-2$	$5.8275 \mathrm{E}-4$	6.4003 E 1
${ }^{91} \mathrm{Y} \mathrm{M}$	\triangle CFY	$2.1633 \mathrm{E}-2$	$1.3275 \mathrm{E}-3$	1.6296E1
${ }^{93} \mathrm{Y}$ GS	\triangle CFY	4.0615E-2	$7.9430 \mathrm{E}-4$	5.1134 E 1
${ }^{93} \mathrm{Y} \mathrm{M}$	\triangle CFY	$1.4160 \mathrm{E}-2$	$1.3719 \mathrm{E}-3$	1.0321 E 1
${ }^{109} \mathrm{Ru}$ GS	IFY	$8.5644 \mathrm{E}-6$	$1.7129 \mathrm{E}-5$	$5.0000 \mathrm{E}-1$
${ }^{109} \mathrm{Ru}$ GS	$\Delta \mathrm{IFY}$	$5.4812 \mathrm{E}-6$	$1.0962 \mathrm{E}-5$	$5.0000 \mathrm{E}-1$
${ }^{109} \mathrm{Ru}$ GS	CFY	$3.0359 \mathrm{E}-4$	$3.1146 \mathrm{E}-4$	$9.7475 \mathrm{E}-1$
${ }^{109} \mathrm{Ru}$ GS	$\triangle \mathrm{CFY}$	$1.9430 \mathrm{E}-4$	$6.8578 \mathrm{E}-5$	2.8333 E 0
${ }^{109} \mathrm{Rh}$ GS	IFY	$2.0599 \mathrm{E}-8$	$4.1197 \mathrm{E}-8$	$5.0000 \mathrm{E}-1$
${ }^{109} \mathrm{Rh}$ GS	$\triangle \mathrm{IFY}$	$1.3183 \mathrm{E}-8$	$2.6366 \mathrm{E}-8$	$5.0000 \mathrm{E}-1$
${ }^{109} \mathrm{Rh}$ GS	CFY	$3.1220 \mathrm{E}-4$	$3.1150 \mathrm{E}-4$	1.0022 E 0
${ }^{109} \mathrm{Rh}$ GS	\triangle CFY	1.9981E-4	6.8578E-5	2.9136 E 0
${ }^{109} \mathrm{Pd}$ GS	\triangle CFY	$1.9981 \mathrm{E}-4$	$6.8578 \mathrm{E}-5$	2.9136 E 0
${ }^{109} \mathrm{Ag}$ GS	\triangle CFY	$1.9981 \mathrm{E}-4$	$6.8578 \mathrm{E}-5$	2.9137 E 0
${ }^{109} \mathrm{Ag} \mathrm{M}$	\triangle CFY	$1.9971 \mathrm{E}-4$	$6.8543 \mathrm{E}-5$	2.9137 E 0
${ }^{132}$ I GS	\triangle CFY	$2.7596 \mathrm{E}-2$	6.0619E-4	4.5523 E 1
${ }^{133}$ I GS	\triangle CFY	$4.2858 \mathrm{E}-2$	$1.5940 \mathrm{E}-3$	2.6888 E1
${ }^{133} \mathrm{Xe} \mathrm{GS}$	\triangle CFY	4.2874E-2	$1.5940 \mathrm{E}-3$	2.6897 E 1
${ }^{135} \mathrm{Cs}$ GS	\triangle CFY	$4.1849 \mathrm{E}-2$	$7.5736 \mathrm{E}-4$	5.5257E1
${ }^{148} \mathrm{Pr}$ GS	\triangle CFY	$1.0456 \mathrm{E}-2$	$1.2999 \mathrm{E}-3$	1.3805 E 1

- The procedure and all the updated values have been documented in a BNL technical report
- Validation with energy released in fission shows consistent results

BACKUP SLIDES

The total energy released in fission, including betadelayed terms, is given by

$$
\begin{equation*}
E=M_{t}-\left(\bar{\nu}_{t}-1\right) M_{n}-\sum C F Y_{k} M_{k} \tag{21}
\end{equation*}
$$

where sum is performed over the most neutron rich stable nuclides for each A value.
M_{t} : Target mass excess,
$\bar{\nu}_{t}$: Total nu-bar,
M_{n} : Neutron mass excess,
$C F Y_{k}$: Cumulative fission yield (chain yield),
M_{k} : mass excess.

Of particular interest is the term given by

$$
\begin{equation*}
Y=\sum C F Y_{k} M_{k} \tag{22}
\end{equation*}
$$

whose uncertainty will be calculated using the scheme developed by Kopeikin.
V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. 67, 1892 (2004).

Library	${ }^{235} \mathrm{U}$	${ }^{238} \mathrm{U}$	${ }^{239} \mathrm{Pu}$	${ }^{241} \mathrm{Pu}$
JEFF-3.3	-173.155 ± 0.076	-173.047 ± 0.298	-173.585 ± 0.115	-173.523 ± 0.240
ENDF/B-VIII.0	-173.125 ± 0.943	-173.225 ± 0.585	-173.676 ± 0.417	-173.552 ± 0.410
ENDF/B-VIII.0 Mod.	-173.137 ± 0.039	-173.218 ± 0.081	-173.694 ± 0.073	-173.547 ± 0.092
Kopeikin (England \& Rider)	-173.43 ± 0.05	-173.39 ± 0.10	-173.87 ± 0.07	-173.82 ± 0.10

TABLE X. Y and ΔY values.

Fig. 2. Effect of the errors in the yield of products originating from ${ }^{235} \mathrm{U}$ fission on the mass defect $\sum y_{A} m\left(A, Z_{A}\right)$ (see main body of the text). The vertical band corresponds to the experimental value of the number n_{f} of neutrons.

[^0]
[^0]: V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. 67, 1892 (2004).

