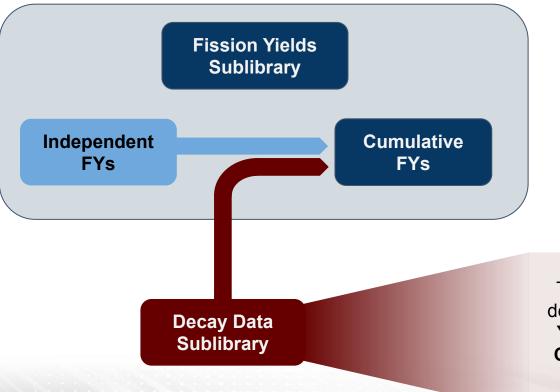
Correcting a few anomalously large Cumulative Fission Yield uncertainties in ENDF/B-VIII.0

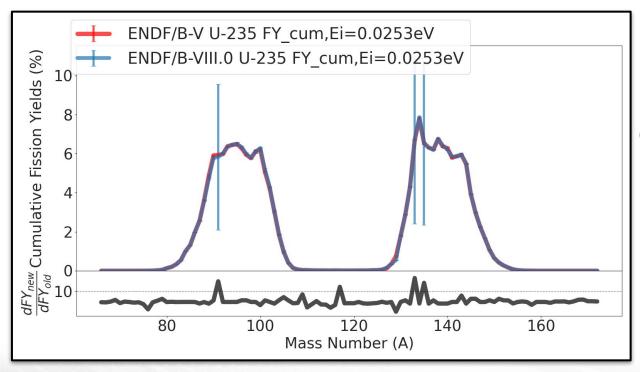
A. Mattera, A.A. Sonzogni


National Nuclear Data Center

BROOKHAVEN SCIENCE ASSOCIATES

Background

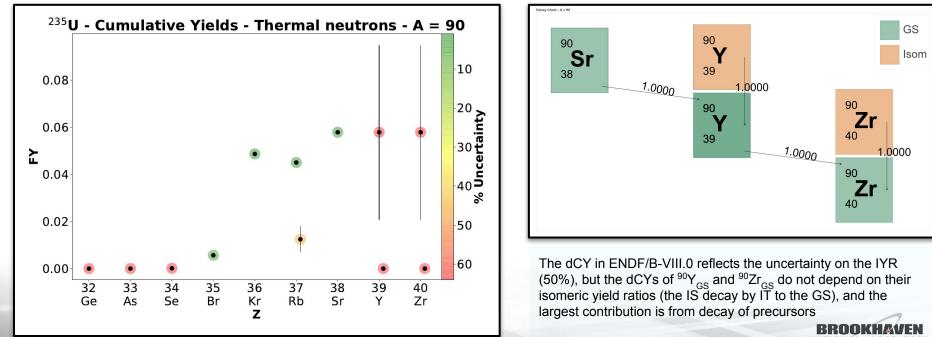
With ENDF/B-VI.8, a new decay data sublibrary was introduced


To ensure consistency, the FY sublibrary was updated to include the changes in the decay

The introduction of new isomers in the decay data sublibrary required **Isomeric Yield Ratios to be assigned**, and the **Cumulative Yields** to be **recalculated** based on the new decay schemes

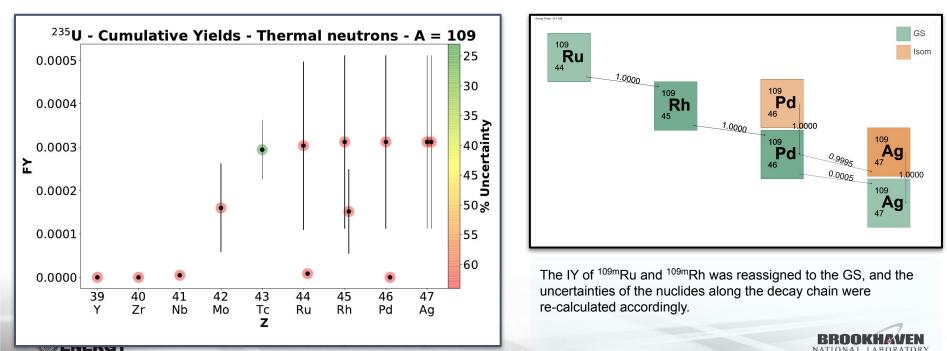
Background

The update caused the uncertainties for some end-of-chain CYs to increase dramatically (up to 180 times the value in the older version of the library)


End-of-chain (**nearly stable**) CYs are generally **experimentally well determined** and their uncertainty is comparable or better than the shorter-lived nuclides in the chain

Correction of CYs

We identified 8 mass chains where the uncertainty was anomalously large, and re-calculated it for 15 fission products



ENENGI

Δ

Correction of CYs and IYs

In A = 109, we also removed isomers for 109 Ru and 109 Rh, that were added in ENDF/B-VI.0, but not confirmed in measurements since

Validation

The total energy released in fission, including betadelayed terms, is given by

$$E = M_t - (\overline{\nu}_t - 1)M_n - \sum CFY_k M_k \tag{21}$$

where sum is performed over the most neutron rich stable nuclides for each A value.

 M_t : Target mass excess,

 $\overline{\nu}_t$: Total nu-bar,

 M_n : Neutron mass excess,

 CFY_k : Cumulative fission yield (chain yield),

 M_k : mass excess.

-

Of particular interest is the term given by

$$Y = \sum CFY_k M_k \tag{22}$$

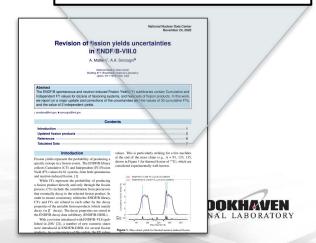
whose uncertainty will be calculated using the scheme developed by Kopeikin.

V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. **67**, 1892 (2004).

Library	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	239 Pu	241 Pu
JEFF-3.3	-173.155 ± 0.076	-173.047 ± 0.298	-173.585 ± 0.115	-173.523 ± 0.240
ENDF/B-VIII.0	-173.125 ± 0.943	-173.225 ± 0.585	-173.676 ± 0.417	-173.552 ± 0.410
ENDF/B-VIII.0 Mod.	-173.137 ± 0.039	-173.218 ± 0.081	-173.694 ± 0.073	-173.547 ± 0.092
Kopeikin (England & Rider)	-173.43 ± 0.05	-173.39 ± 0.10	-173.87 ± 0.07	-173.82 ± 0.10

TABLE X. Y and ΔY values.

6



Summary

- The FY uncertainty values for 18 Fission Products and all spontaneous fission (SFY) and neutron-induced (NFY) materials was corrected
- We pushed changes to the git repository of ENDF/B-VIII at the end of September 2020.
- The procedure and all the updated values have been documented in a BNL technical report
- Validation with energy released in fission shows consistent results

235-U	Energy=2.53E-2			
Nuclide	Quantity	Current Value	Updated Value	Ratio (new/old)
90 Y GS	ΔCFY	3.7004E-2	5.7819E-4	6.4000E1
90Zr GS	ΔCFY	3.7004E-2	5.7819E-4	6.4000E1
91 Y GS	ΔCFY	3.7298E-2	5.8275E-4	6.4003E1
⁹¹ Y M	ΔCFY	2.1633E-2	1.3275E-3	1.6296E1
93Y GS	ΔCFY	4.0615E-2	7.9430E-4	5.1134E
⁹³ Y M	ΔCFY	1.4160E-2	1.3719E-3	1.0321E1
109 Ru GS	IFY	8.5644E-6	1.7129E-5	5.0000E-
109Ru GS	Δ IFY	5.4812E-6	1.0962E-5	5.0000E-
109Ru GS	CFY	3.0359E-4	3.1146E-4	9.7475E-
109Ru GS	ΔCFY	1.9430E-4	6.8578E-5	2.8333E0
109Rh GS	IFY	2.0599E-8	4.1197E-8	5.0000E-
109Rh GS	Δ IFY	1.3183E-8	2.6366E-8	5.0000E-
109Rh GS	CFY	3.1220E-4	3.1150E-4	1.0022E0
109 Rh GS	ΔCFY	1.9981E-4	6.8578E-5	2.9136E0
109Pd GS	ΔCFY	1.9981E-4	6.8578E-5	2.9136E0
109 Ag GS	ΔCFY	1.9981E-4	6.8578E-5	2.9137E0
109 Ag M	ΔCFY	1.9971E-4	6.8543E-5	2.9137E0
132I GS	ΔCFY	2.7596E-2	6.0619E-4	4.5523E1
133 I GS	ΔCFY	4.2858E-2	1.5940E-3	2.6888E1
133 Xe GS	ΔCFY	4.2874E-2	1.5940E-3	2.6897E1
135Cs GS	ΔCFY	4.1849E-2	7.5736E-4	5.5257E1
148Pr GS	ΔCFY	1.0456E-2	1.2999E-3	1.3805E1

BACKUP SLIDES

BROOKHAVEN SCIENCE ASSOCIATES

The total energy released in fission, including betadelayed terms, is given by

$$E = M_t - (\overline{\nu}_t - 1)M_n - \sum CFY_k M_k \tag{21}$$

where sum is performed over the most neutron rich stable nuclides for each A value.

 M_t : Target mass excess,

 $\overline{\nu}_t$: Total nu-bar,

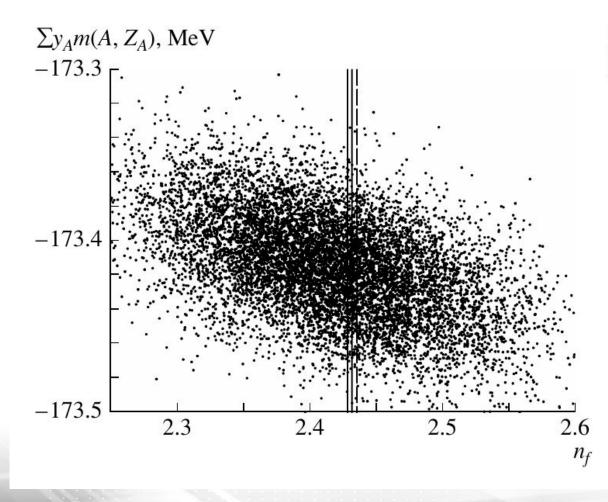
 M_n : Neutron mass excess,

 CFY_k : Cumulative fission yield (chain yield),

 M_k : mass excess.

Of particular interest is the term given by

$$Y = \sum CFY_k M_k \tag{22}$$


whose uncertainty will be calculated using the scheme developed by Kopeikin.

V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. **67**, 1892 (2004).

Library	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	239 Pu	241 Pu
JEFF-3.3	-173.155 ± 0.076	-173.047 ± 0.298	-173.585 ± 0.115	-173.523 ± 0.240
ENDF/B-VIII.0	-173.125 ± 0.943	-173.225 ± 0.585	-173 .676 \pm 0.417	-173.552 ± 0.410
ENDF/B-VIII.0 Mod.	-173.137 ± 0.039	-173.218 ± 0.081	-173.694 ± 0.073	-173.547 ± 0.092
Kopeikin (England & Rider)	-173.43 ± 0.05	-173.39 ± 0.10	-173.87 ± 0.07	-173.82 ± 0.10

TABLE X. Y and ΔY values.

9

Fig. 2. Effect of the errors in the yield of products originating from ²³⁵U fission on the mass defect $\sum y_A m(A, Z_A)$ (see main body of the text). The vertical band corresponds to the experimental value of the number n_f of neutrons.

V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. At. Nucl. 67, 1892 (2004).