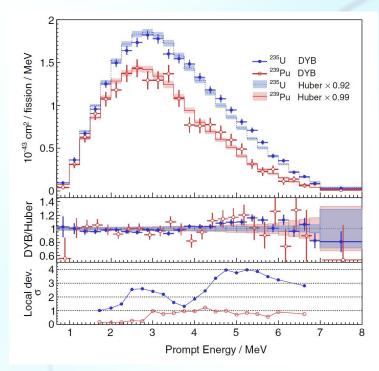
# Additions to the ENDF/B decay data sub-library from NNDC

R.J. Lorek,

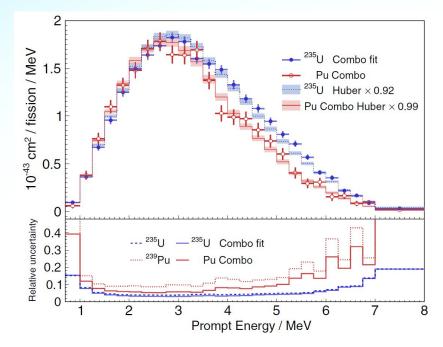
A. Mattera, E.A. McCutchan, A.A. Sonzogni

National Nuclear Data Center





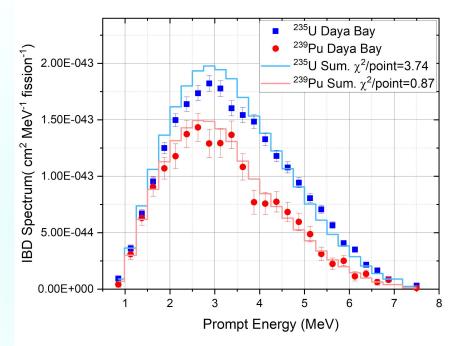

#### **ENDF/B Decay Data Sub-Library**


- Current version (VIII.0) current as of February 2018.
  - Decay Data Sublibrary contains spectrum data concerning nuclear decays for over 3800 isotopes (ground states and isomers).
- Version VIII.I in progress with ~435 materials updated in the last year.
- Motivation: Ensure the published ENDF/B database reflects the most current and accurate evaluations available.
- Updates:
  - Decay Half-lives for neutron rich isotopes of Z 2-28 (2015BI05).
  - TAGS spectra on  $^{100,102}$ Nb<sub>gs,m</sub> (2019GU03).
  - Calculated Antineutrino spectra added for neutron rich isotopes of Z 27-64.
    - Calculation made from summation beta spectra.



#### **Application to Reactor Antineutrino Research**




Plots Credit: D. Adey et al. PRL 123, 111801 (2019).



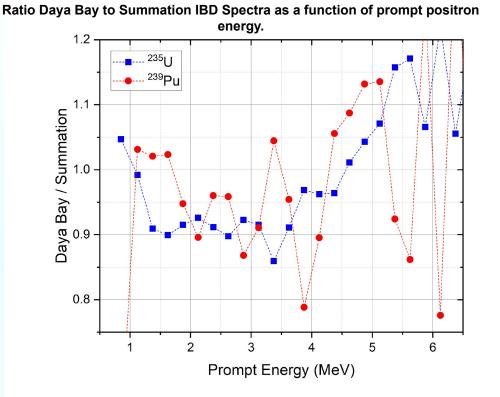
- In 2019, the Daya Bay collaboration published the <sup>235</sup>U and <sup>239</sup>Pu, as well as the <sup>235</sup>U and (<sup>239</sup>Pu+ <sup>241</sup>Pu) spectra, which were compared to the Huber model.
- In the next few slides we'll compare them with results from the databases.

### **Application to Reactor Antineutrino Research**

<sup>235</sup>U and <sup>239</sup>Pu IBD Spectra as a function of prompt positron energy.



Summation from ENDF/B-VIII.1 and JEFF-3.3 Cumulative Yields.


Daya Bay deduced antineutrino spectra For <sup>235</sup>U and <sup>239</sup>Pu.

Nuclear databases suggest <sup>239</sup>Pu spectrum should be as smooth as <sup>235</sup>U's



Daya Bay Data from: D. Adey, et al. PRL 123, 111801 (2019).

## **Application to Reactor Antineutrino Research**



Ratio of the <sup>239</sup>Pu and <sup>235</sup>U Daya Bay spectra to their respective database summation spectra.

Both fuels appear to contribute to the anomaly, since the ratio is lower than one at 3 MeV, with <sup>235</sup>U making the main contributing to the 5 MeV "Bump".

The <sup>239</sup>Pu ratio stands out as not smooth compared to the <sup>235</sup>U ratio.



Daya Bay Data from: D. Adey, et al. PRL 123, 111801 (2019).

### **Conclusions**

- Significant updates have been made to the Decay Data Sub-Library that enhance its usefulness as a research tool.
- Application of the Sub-Library to cross check the latest Daya Bay results demonstrates this usefulness and reveals:
  - The database summation spectra do not entirely agree with the deduced spectra generated from the Daya Bay data.
  - The <sup>239</sup>Pu spectra do have a reasonably close match based on the  $\chi^2$  per degree of freedom value, the Daya Bay spectra exhibits features in its shape at and around 4 MeV that are not seen in the summation spectrum and are outside of the error bars of the Daya Bay data.
  - The <sup>235</sup>U spectra fail to produce the same yield values, and shows a similar disagreement with the summation calculation as with Huber's model.

