Validating Pu-isotope ENDF/B-VIII.0 Nuclear Data with Critical Assemblies and Pulsed Spheres using Machine Learning Algorithms

CSEWG, Validation Session 12/2/20 Denise Neudecker

<u>Thanks to</u>: O. Cabellos, A. Clark, P. Grechanuk, M. Grosskopf, W. Haeck, M. Herman, J. Hutchinson, A.C. Kahler, T. Kawano, P. Koehler, A. Lovell, M. Rising, I. Stetcu, P. Talou, S. Vander Wiel

How did we validate Pu-isotope (²³⁸⁻²⁴²Pu) nuclear data?

<u>Statistics tools used</u>: Random forests and SHAP metric. Shown to be able to highlight issues in nuclear data in Neudecker et al., NDS 167, 36-60 (2020).

Nuclear data validated: ²³⁸⁻²⁴²Pu for ENDF/B-VII.1 and ENDF/B-VIII.0.

Validation experiments used:

- 875 criticality experiments
- 15 LLNL pulsed-sphere neutron-leakage spectra

Additional information used for validation:

- Systematic comparison of nuclear data with differential experimental data from EXFOR (only in rare cases detailed analysis)
- Nuclear-theory considerations

Validation of ²⁴¹Pu nuclear data: this is a challenge due to compensating errors!

Energy ranges and observables highlighted as problematic by ML.

Energy (MeV)	PFNS	Nu-bar	(n,f)	(n,g)	(n,el)	(n,inl)
Thermal						
7e-8-1e-5						
1-5.5e ⁻⁴						
5.5e ⁻⁴ -2.5e ⁻²						
2.5e ⁻² -2.479						
2.479-4.8						
4.8-8.187						

No Diff. Exp.

Exp. Agree with evaluation but freedom to move

Diff. Exp. Disagree with evaluation

"Highlights" of issues in ²⁴¹Pu nuclear data:

Can we extend resonance range of (n,f), (n,el) and (n,g)?

High-level summary of issues in ²⁴¹Pu nuclear data:

Issues that are recommended to be investigated for a new release:	 (n,f) cross section from 0.1-2 MeV. Replace PFNS with an evaluation that captures the physics expected behavior better. Investigate if it is possible to extend the resonance range to higher E_{inc}.
Potential freedom in nuclear data that could be exploited to obtain better agreement with validation experiments:	 Get a finer grid for nu-bar. Investigate if it is feasible and beneficial to get closer to some standards at thermal, especially (n,f) and nubar (the (n,f) thermal value differs by about 1 sigma from standard value).

Validation of ²³⁹Pu nuclear data: also a challenge due to compensating errors!

Energy ranges and observables highlighted as problematic by ML.

Energy (MeV)	PFNS	Nu-bar	(n,f)	(n,g)	(n,el)	(n,inl)	(n,2n)
Thermal							
5e ⁻⁸ -4e ⁻⁷							
4e ⁻⁷ -8.1e ⁻⁶							
8.1e ⁻⁶ -0.1							
0.1-2.354							
2.354-8.187							

No Diff. Exp.

Exp. Agree with evaluation but freedom to move

Diff. Exp. Disagree with evaluation

High-level summary of issues in ²³⁹Pu:

Issues that are recommend ed to be investigated for a new release:	 Re-evaluate PFNS with recent Chi-Nu and CEA exp. data. (n,f): Are there structures in the URR? (see Bertsch, PRC 98, 014611 (2018)); where should the eval. cs above 10 MeV go? 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Potential freedom in nuclear data that could be exploited to obtain better agreement with validation experiments:	 After PFNS is fixed, one might investigate thermal constants compared to standard values. Incorporate newest (n,f) standard. 0.3-17 keV for nu-bar (no exp. data) and tweaking nu-bar in the fast. Balance (n,tot), (n,el) & (n,inl) cs from 0.1-2.4 MeV. 	0.1 1 Outgoing Neutron Energy (MeV)	10 10 10 10 10
		VIII.0 at 13.75 Me	эV

Slide 7

Validation of ²⁴⁰Pu nuclear data:

Energy ranges and observables highlighted as problematic by ML.

Energy (MeV)	PFNS	Nu-bar	(n,f)	(n,g)	(n,el)	(n,inl)
Thermal						
3.25e-7-5.5e-4						
5.5e-4-2.5e-2						
2.5e ⁻² -1.85						
1.85-3						
3-12.84						
12.84-15.68						

No Diff. Exp.

Exp. Agree with evaluation but freedom to move

Diff. Exp. Disagree with evaluation

Slide 8

High-level summary of issues in ²⁴⁰Pu:

Issues that could be investigate d:	 Is the shape of nu-bar physical? (0.5-0.9, 4-6, 13-15 MeV) Study (n,f) cs in the fast range 	94-Pu-240(H, F)PR, HU 6 Prompt nu-bar 5
Potential freedom in nuclear data:	 Re-evaluate PFNS with Chi-Nu exp. if different (avoid compensating effects) Is there an issue in the (n,el) cs from 0.9-1.2 MeV? Exp. Data might be misleading. 	A A A A A A A A A A A A A A A A A A A

3

Cross Section (barns)

Validation of ²³⁸Pu nuclear data:

Energy ranges and observables highlighted as problematic by ML.

Energy (MeV)	PFNS	Nu-bar	(n,f)	(n,g)	(n,el)	(n,inl)
Thermal						
1e ⁻⁷ -3.25e ⁻⁷						
3.25e ⁻⁷ -8.1e ⁻⁶						
8.1e ⁻⁶ -1.7e ⁻²						
1.7e ⁻² -0.9						
0.9-2.479						
2.479-3						

No Diff. Exp.

Exp. Agree with evaluation but freedom to move

Diff. Exp. Disagree with evaluation

High-level summary of issues in ²³⁸Pu:

5×10⁻⁸

2×10-9

5×10-9

10⁻⁸ 2×10⁻⁸

Incident Energy (MeV)

10-7

2×10-7

Issues that could be investigate d:	 Re-evaluate thermal nu-bar using exp. data (n,g): study exp. Data close to ~1e⁻⁷ and for 1e⁻⁵-1e⁻³ MeV 	³ (<i>n</i> , <i>f</i>) cross sections			
Potential freedom in nuclear data:	 (n,f): check at thermal, one can tweak from 0.1–3 MeV. 	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			
2×10 ⁻⁹ 5×10 ⁻⁹ 2×10 ³ 10 ³ 5×10 ² 2×10 ² 10 ² 50 (<i>n,g</i>) 0	10 ⁻⁸ 2*10 ⁻⁸ 5*10 ⁻⁸ 10 ⁻⁷ 2*10 ⁻⁷ 2*10 ³ 10 ³ 10 ³ 5*10 ² 10 ² 10 ² 5 ⁵ 10 ² 10 ³ 10 ² 10 ³ 10 ² 10 ³ 10 ² 10 ³ 10 ² 10 ³ 10 ³ 10 ² 10 ³ 10 ³ 10 ² 10 ³ 10 ² 10 ³ 10 ² 10 ³ 10 ³ 10 ² 10 ²	$5 \times 10^{-6} 10^{-5} 5 \times 10^{-5} 10^{-4} 5 \times 10^{-4} 10^{-3} 10^{-3} 10^{-4} 10^{-3} $			

5×10⁻⁶ 10⁻⁵

10-4

5×10⁻⁵ Incident Energy (MeV) 5×10⁻⁴ 10⁻³

Validation of ²⁴²Pu nuclear data:

Energy ranges and observables highlighted as problematic by ML.

Energy (MeV)	PFNS	Nu-bar	(n,f)	(n,g)	(n,el)	(n,inl)
Thermal						
1.5e ⁻⁷ -2e ⁻⁷						
2e ⁻⁷ -3e ⁻⁶						
3e ⁻⁶ -3e ⁻³						
3e ⁻³ -1.72e ⁻²						
1.72e ⁻² -0.9						
0.9-6.434						

No Diff. Exp.

Exp. Agree with evaluation but freedom to move

Diff. Exp. Disagree with evaluation

High-level summary of issues in ²⁴²Pu:

Summary

- We validated ²³⁸⁻²⁴²Pu ENDF/B-VIII.0 nuclear data with respect to 875 critical assemblies and 15 pulsed spheres. We also compared evaluated data to differential data from EXFOR and took into account basic theoretical considerations.
- CAVEAT: experimental data were not analyzed in detail and a comparison to EXFOR as is might be misleading. SG-50 might help for such undertakings.
- A (down-selected) listing of potential issues in nuclear data that could be investigated for a new release was shown.
- Some hints potential freedom to move nuclear data is given.
- Is someone interested in helping us investigate resonance-range issues?

Thank you for your attention!

Acknowledgements

Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.

We gratefully acknowledge the support of the Advanced Simulation and Computing (ASC) program at Los Alamos National Laboratory.

This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the NNSA for the Department of Energy.

