# Data Testing with Zero Power Reactor (ZPR), Zero Power Physics Reactor (ZPPR), and New Thermal Epithermal eXperiments (TEX) Plutonium Benchmarks

Presented at the Cross Section Evaluation Working Group (CSEWG) Virtual Meeting December 2, 2020

Catherine Percher Jesse Norris, Soon Kim, David Heinrichs



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL-PRES-817164



## Four Critical Facilities Operated by Argonne National Laboratory

- Zero Power Reactors (ZPR)
   ZPR-3, ZPR-6, ZPR-9
- Zero Power Physics Reactor (ZPPR)
- Very complicated honeycomb drawer configurations comprising thousands of fissile, diluent, and reflector plates

**ANL Critical Assembly Dates** 











#### **ZPR-3 Benchmarks- 9 Evaluations**

| IEU-MET-FAST-015  | ZPR-3 ASSEMBLY 6F: A SPHERICAL ASSEMBLY OF HIGHLY ENRICHED URANIUM, DEPLETED URANIUM, ALUMINUM AND STEEL WITH AN AVERAGE 235U ENRICHMENT OF 47 ATOM %                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEU-MET-FAST-016  | ZPR-3 ASSEMBLY 11: A CYLINDRICAL ASSEMBLY OF HIGHLY ENRICHED URANIUM AND DEPLETED URANIUM WITH AN AVERAGE 235U ENRICHMENT OF 12 ATOM % AND A DEPLETED URANIUM REFLECTOR |
| IEU-COMP-FAST-004 | ZPR-3 ASSEMBLY 12: A CYLINDRICAL ASSEMBLY OF HIGHLY ENRICHED URANIUM, DEPLETED URANIUM AND GRAPHITE WITH AN AVERAGE 235U ENRICHMENT OF 21 ATOM %                        |
| HEU-MET-FAST-055  | ZPR-3 ASSEMBLY 23: A CYLINDRICAL ASSEMBLY OF U METAL (93% 235U) AND ALUMINUM<br>REFLECTED BY DEPLETED-URANIUM                                                           |
| IEU-MET-FAST-012  | ZPR-3 ASSEMBLY 41: A CYLINDRICAL ASSEMBLY OF U METAL (16% 235U), ALUMINUM, AND STEEL, REFLECTED BY DEPLETED-URANIUM                                                     |
| MIX-COMP-FAST-003 | ZPR-3 ASSEMBLIES 48 AND 48B: CYLINDRICAL ASSEMBLIES OF MIXED (PU,U), GRAPHITE AND SODIUM WITH A DEPLETED URANIUM BLANKET                                                |
| MIX-COMP-FAST-004 | ZPR-3 ASSEMBLY 56B: A CYLINDRICAL ASSEMBLY OF MIXED (PU,U), OXIDE AND SODIUM WITH A NICKEL-SODIUM REFLECTOR                                                             |
| PU-MET-INTER-003  | ZPR-3 ASSEMBLY 58: A CYLINDRICAL ASSEMBLY OF PLUTONIUM METAL AND GRAPHITE WITH A<br>THICK DEPLETED URANIUM REFLECTOR                                                    |
| PU-MET-INTER-004  | ZPR-3 ASSEMBLY 59: A CYLINDRICAL ASSEMBLY OF PLUTONIUM METAL AND GRAPHITE WITH A<br>THICK LEAD REFLECTOR                                                                |
|                   |                                                                                                                                                                         |



#### **ZPR-6** Benchmarks, 4 Evaluations

| PU-MET-INTER-002   | ZPR-6 ASSEMBLY 10: A CYLINDRICAL PLUTONIUM/CARBON/STAINLESS STEEL ASSEMBLY<br>WITH STAINLESS STEEL AND IRON REFLECTORS   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| MIX-COMP-FAST-002  | ZPR-6 ASSEMBLY 7 HIGH 240PU CORE: A CYLINDRICAL ASSEMBLY WITH MIXED (PU,U)-OXIDE FUEL AND A CENTRAL HIGH 240PU ZONE      |
| MIX-COMP-FAST-001  | ZPR-6 ASSEMBLY 7: A CYLINDRICAL ASSEMBLY WITH MIXED (PU,U)-OXIDE FUEL AND SODIUM WITH A THICK DEPLETED-URANIUM REFLECTOR |
| IEU-COMP-INTER-005 | ZPR-6 ASSEMBLY 6A: A CYLINDRICAL ASSEMBLY WITH URANIUM OXIDE FUEL<br>AND SODIUM WITH A THICK DEPLETED-URANIUM BLANKET    |



#### **ZPR-9 Benchmarks- 8 Evaluations**

| IEU-MET-FAST-013  | ZPR-9 ASSEMBLY 1: A CYLINDRICAL ASSEMBLY OF U METAL (93% 235U) AND<br>DEPLETED URANIUM WITH ALUMINUM REFLECTORS                                                                        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEU-MET-FAST-014  | ZPR-9 ASSEMBLIES 2 AND 3: CYLINDRICAL ASSEMBLIES OF U METAL AND<br>TUNGSTEN WITH ALUMINUM REFLECTORS                                                                                   |
| HEU-MET-FAST-060  | ZPR-9 ASSEMBLY 4: A CYLINDRICAL ASSEMBLY OF U METAL (93% 235U) AND<br>TUNGSTEN WITH ALUMINUM REFLECTORS                                                                                |
| HEU-MET-FAST-067  | ZPR-9 ASSEMBLIES 5 AND 6: HEU (93% 235U) CYLINDRICAL CORES WITH<br>TUNGSTEN, GRAPHITE, AND ALUMINUM DILUENTS WITH A DENSE ALUMINUM<br>REFLECTOR                                        |
| HEU-MET-FAST-070  | ZPR-9 ASSEMBLIES 7, 8 AND 9: CYLINDRICAL CORES WITH HEU (93% 235U),<br>TUNGSTEN, AND ALUMINUM OR ALUMINUM OXIDE WITH A DENSE ALUMINUM,<br>ALUMINUM OXIDE, OR BERYLLIUM OXIDE REFLECTOR |
| MIX-COMP-FAST-005 | ZPR-9 ASSEMBLY 31: A CYLINDRICAL ASSEMBLY WITH MIXED (PU,U)-CARBIDE FUEL AND DEPLETED URANIUM CARBIDE BLANKET                                                                          |
| IEU-MET-FAST-010  | THE U9 BENCHMARK ASSEMBLY: A CYLINDRICAL ASSEMBLY OF U METAL (9% 235U)<br>WITH A THICK DEPLETED-URANIUM REFLECTOR (ASSEMBLY 34)                                                        |
| HEU-MET-INTER-001 | THE URANIUM/IRON BENCHMARK ASSEMBLY: A 235U(93%)/IRON CYLINDER<br>REFLECTED BY STAINLESS STEEL (ASSEMBLY 34)                                                                           |



#### **ZPPR Benchmarks- 8 Evaluations**

| PU-MET-FAST-033       | ZPPR-21 PHASE A: A CYLINDRICAL ASSEMBLY OF PU METAL REFLECTED<br>BY GRAPHITE                                                   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| HEU-MET-FAST-061      | ZPPR-21 PHASE F: A CYLINDRICAL ASSEMBLY OF U METAL REFLECTED BY GRAPHITE                                                       |
| HEU-MET-FAST-075      | ZPPR-20 PHASE C: A CYLINDRICAL ASSEMBLY OF U METAL REFLECTED BY<br>BERYLLIUM OXIDE                                             |
| HEU-MET-MIXED-012     | ZPPR-20 PHASE D: A CYLINDRICAL ASSEMBLY OF POLYETHYLENE-<br>MODERATED U METAL REFLECTED BY BERYLLIUM OXIDE AND<br>POLYETHYLENE |
| MIX-MET-FAST-011      | ZPPR-21 PHASES B THROUGH E: CYLINDRICAL ASSEMBLIES OF MIXED<br>FISSILE PU AND U METAL REFLECTED BY GRAPHITE                    |
| MIX-COMP-FAST-006     | ZPPR-2: A CYLINDRICAL ASSEMBLY WITH MIXED (PU,U)-OXIDE FUEL AND SODIUM REFLECTED BY DU, SODIUM AND STEEL                       |
| SUB-HEU-MET-FAST-001  | ZPPR-20 PHASE E: A CYLINDRICAL ASSEMBLY OF U METAL REFLECTED BY BERYLLIUM OXIDE AND SAND                                       |
| SUB-HEU-MET-MIXED-001 | ZPPR-20 PHASE D: A CYLINDRICAL ASSEMBLY OF POLYETHYLENE-<br>MODERATED U METAL REFLECTED BY BERYLLIUM OXIDE AND<br>POLYETHYLENE |



# **ZPR/ZPPR Benchmarking Process**







# **Transformation Bias Can Vary with Data Library**

PU-MET-INTER-002, ZPR-6 Assembly 10: A Cylindrical Plutonium/Carbon/ Stainless Steel Assembly with Stainless Steel and Iron Reflectors

| Library       | Code, Transformati<br>Reference Bias (pcm) |               |
|---------------|--------------------------------------------|---------------|
| ENDF/B-V      | VIM,<br>PMI-002                            | 1470 $\pm$ 90 |
| ENDF/B-VII.1  | MCNP5 <i>,</i><br>PMI-002                  | 1280 $\pm$ 11 |
| ENDF/B-VII.1  | MCNP6.1,<br>this work                      | 1311 $\pm$ 25 |
| ENDF/B-VIII.0 | MCNP6.1,<br>this work                      | 1571 $\pm$ 26 |

PMI-002 total benchmark uncertainty is **230 pcm** 





# **RZ Models are THE Benchmarks, but can have Marked Physics Differences from Detailed**



Sensitivities calculated using MCNP6.1 with ENDF/B-VIII.0 cross sections for both detailed plate and homogenized RZ models



# **RZ Models are THE Benchmarks, but can have Marked Physics Differences from Detailed**



Sensitivities calculated using MCNP6.1 with ENDF/B-VIII.0 cross sections for both detailed plate and homogenized RZ models



# **RZ Models are THE Benchmarks, but can have Marked Physics Differences from Detailed**



Sensitivities calculated using MCNP6.1 with ENDF/B-VIII.0 cross sections for both detailed plate and homogenized RZ models



# Example: Plutonium Aluminum No Nickel (PANN) Plates VIM Models Simplifications



| Variable        | Value from PMI-002<br>(Nominal Measurements) |
|-----------------|----------------------------------------------|
| Length of PANN  | 3.00 in                                      |
| Width of PANN   | 2.00 in                                      |
| Height of PANN  | 0.125 in                                     |
| Pu/Al Density   | 14.61 g/cm <sup>3</sup>                      |
| SS304 Clad Dens | 3.88, 5.89, 4.47, 7.16 g/cm <sup>3</sup>     |



| Variable        | Value from PMM-002<br>(Actual Measurements) |
|-----------------|---------------------------------------------|
| Length of PANN  | 3.002 ± 0.003 in                            |
| Width of PANN   | 1.993 ± 0.004 in                            |
| Height of PANN  | 0.117 ± 0.002 in                            |
| Pu/Al Density   | 15.13 g/cm <sup>3</sup>                     |
| SS304 Clad Dens | 7.9 g/cm <sup>3</sup>                       |





# Words of Caution for Using ZPPR Benchmarks, Particularly for Nuclear Data Adjustments

- Large physics differences can be seen between heterogeneous plate-by-plate models versus homogenous RZ models

   Especially for softer-spectrum experiments
- Plate-by-plate models are not benchmarked, nor is enough information provided in Section 1 to allow independent model generation
  - Use nominal plate sizes- uncertainty effects of which are NOT quantified
  - Have non-physical densities
- Uncertainties are almost assuredly underestimated for all ZPPR benchmarks
  - No assessment of geometry uncertainties due to real plate sizes, including overall core size





# PU-MET-MIXED-002

- New plutonium-fueled benchmark accepted into the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook
  - Fuel was plutonium/aluminum Zero Power Physics Reactor (ZPPR) plates
  - Pu plates arranged in 12" x 12" layers (6 plates by 4 plates)
- First Benchmark for the Thermal/ Epithermal eXperiments (TEX) Project
  - Minimum of materials
  - Designed to span multiple neutron fission energy spectra (fast through thermal) using polyethylene moderator
  - Assembly designed to be easily modified to test materials of interest







## **PU-MET-MIXED-002 Configurations**



Picture of TEX-Pu Configuration on Planet Vertical Lift Machine at the National Criticality Experiments Research Center (NCERC), Photo credit Los Alamos National Laboratory



Diagram showing the Plutonium TEX configurations and the variable thickness, x, of polyethylene moderator between each layer





# **PU-MET-MIXED-002 Characteristics by Case**

| Case Number | Thickness of<br>PE Moderator<br>(in) | Thermal Fission<br>Fraction<br>(<0.625 eV) | Intermediate<br>Fission Fraction<br>(0.625 eV-<br>100 KeV) | Fast<br>Fission<br>Fraction<br>(>100 KeV) |
|-------------|--------------------------------------|--------------------------------------------|------------------------------------------------------------|-------------------------------------------|
| 1           | 0 (no PE)                            | 0.09                                       | 0.18                                                       | 0.73                                      |
| 2           | 1/16                                 | 0.14                                       | 0.38                                                       | 0.48                                      |
| 3           | 3/16                                 | 0.28                                       | 0.43                                                       | 0.29                                      |
| 4           | 7/16                                 | 0.50                                       | 0.32                                                       | 0.18                                      |
| 5           | 1                                    | 0.66                                       | 0.21                                                       | 0.13                                      |







#### PMM-002 Results- MCNP6.1





#### **PU-MET-MIXED Results**







# New TSL is Mitigating ENDF/B-VIII.0 Overprediction







# <sup>239</sup>Pu Changes are Driving the Differences







# **PMM-002 Data Testing Conclusions**

- New TSLs in ENDF/B-VIII.0 reduce the overprediction of the library for the most moderated cases
- The differences between VII.1 and VIII.0 are driven by the <sup>239</sup>Pu changes, and are consistently higher for all configurations
  - The VIII.0 <sup>239</sup>Pu thermal cross sections were specifically adjusted lower to better predict plutonium thermal solutions criticality benchmarks, yet they overpredict the TEX thermal configurations, moderated by PE
- Other, smaller differences seen for <sup>240</sup>Pu and <sup>56</sup>Fe
- PMM-002 has shown utility in testing cross sections over a wide range of neutron energies





#### PU-MET-MIXED-003, TEX-Pu with Tantalum



- TEX was designed to easily accommodate test materials of interest
- First test material was Tantalum, due to lack of integral benchmarks
- ZPPR Inventory included 15,000 very pure tantalum plates
   Nominal outer dimensions of 2" by 3" by 0.0625"
- Five configurations benchmarked as PU-MET-MIXED-003, approved by ICSBEP pending comment resolution



# PMM-002 (1-5) and PMM-003 (6-10, with Ta) Results, MCNP6.1





# Acknowledgements

- This work was funded by the United States Department of Energy's Nuclear Criticality Safety Program (NA-511).
- The experiments were a joint effort by Lawrence Livermore National Laboratory and Los Alamos National Laboratory and were completed at National Critical Experiments Research Center (NCERC).
- Personnel from the Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Sandia National Laboratories (SNL), and the Naval Nuclear Laboratory (NNL) provided design and review assistance for the TEX experiments.





#### Lawrence Livermore National Laboratory

#### Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.