Validation of new evaluations of the chromium isotopes

G.P.A. Nobre¹, M. T. Pigni², D.A. Brown¹, R. Capote³, A. Trkov⁴, R. Arcilla¹, A. Cuadra⁵, K.H. Guber², G. Arbanas², B. Kos⁴, R. Arcilla¹, J. Gutierrez⁶

¹National Nuclear Data Center, Brookhaven National Laboratory
²Oak Ridge National Laboratory
³NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
⁴Jozef Stefan Institute, Slovenia
⁵Nuclear Systems & Structural Analysis Group, Brookhaven National Laboratory
⁶Gonzaga University, Spokane, WA

2020 Nuclear Data Week - CSEWG, November 30th - December 4th, 2020

Summary of Cr evaluations

- Isotope and reactions to update?
 - *^{50,53}Cr: thermal and up to 10 keV; all reactions in fast region.
 - *^{52,54}Cr: all reactions in fast region.
 - *Reconstructed isotopic angular distributions in resonance region.
- Motivation? Deficiencies in the current ENDF/B-VIII.0?
 - * Chromium is an important alloy in stainless steel. After recent evaluation of iron, it is essential to better constrain Cr files.
 - *^{50,53}Cr: Cluster of capture resonances in the region 1-10 keV drive criticality in Cr-sensitive benchmarks. ENDF/B-VIII.0 followed data with inaccurate correction determination in this region (e.g., MS)
- What new data/theory motivate a new evaluation/update?
 - *Appropriate normalization of Guber ⁵³Cr(n,g) data (ORNL) in the 1-10 keV region
 - *Neutron and gamma ⁵²Cr inelastic data from Mihailescu (GEEL)
 - *New soft-rotor dispersive optical potential for ^{50,52,54}Cr, interpolated as rigid rotor for ⁵³Cr
- What validation testing has been/will be done?
 - * Chromium-sensitive benchmarks identified, in particular KBR-15 (HEU-COMP-INTER-005 k_{∞}) and ZPR-6/10 (PU-MET-INTER-002) with strong sensitivity to Cr – both are big outliers (11% and 2% in k, respectively)
 - *Oktavian-Cr 14 MeV leakage: Not in SINBAD, new model developed in JSI
 - *New evaluation greatly improves reactivity prediction and performs well for the 14 MeV benchmark

50-CI 4%

53-Cr 54-Cr 2%

52-Cr

84%

10%

Criticality benchmarks

List of chromium-sensitive benchmarks from the ICSBEP Handbook

selected for the validation of new chromium evaluated files.

No. ICSBEP Label	Short name	Common name	Comment
1 HEU-COMP-INTER-005	hci005-009	KBR-09(SS)	k_∞
2 HEU-COMP-INTER-005	hci005-010	KBR-10(Mo)	k_∞
3 HEU-COMP-INTER-005	hci005-015	KBR-15(Cr)	k_∞
4 HEU-COMP-THERM-011	hct011-001	RRC-KI-21x21-001	$\mathrm{SS}_{\mathrm{cladding}}$
5 HEU-COMP-THERM-011	hct011-002	RRC-KI-21x21-002	$SS_{cladding}$
6 HEU-COMP-THERM-011	hct011-003	RRC-KI-21x21-003	$SS_{cladding}$
7 HEU-COMP-THERM-012	hct012-001	RRC-KI-18x18-001	$SS_{cladding}$
8 HEU-COMP-THERM-012	hct012-002	RRC-KI-18x18-002	$SS_{cladding}$
9 HEU-COMP-THERM-013	hct013-001	RRC-KI-14x14-001	$SS_{cladding}$
10 HEU-COMP-THERM-013	hct013-002	RRC-KI-14x14-002	$SS_{cladding}$
11 HEU-COMP-THERM-014	hct014-001	RRC-KI-10x10-001	$SS_{cladding}$
12 HEU-COMP-THERM-014	hct014-002	RRC-KI-10x10-002	$SS_{cladding}$
13 HEU-COMP-THERM-022	hct022-001	SPERT-III	$SS_{cladding}$
14 HEU-MET-INTER-001	hmi001	ZPR-9/34	$\mathrm{SS}_{\mathrm{reflector}}$
15 HEU-MET-INTER-001	hmi001d	ZPR-9/34	$\mathrm{SS}_{\mathrm{reflector}}$
16 HEU-MET-THERM-016	hmt016	LACEF/Ni-Cr-Mo-Gd	
17 HEU-SOL-THERM-026	hst026-001	$RF_{ m Concrete}$	
18 IEU-COMP-THERM-005	ict005	KBR-21	k_∞
19 LEU-SOL-THERM-012	lst012-001	TRACY-203c	
20 MIX-COMP-FAST-001	mcf001	ZPR -6/7	
21 MIX-MET-FAST-008	mmf008-003	ZEBRA-8C/2	k_∞
22 PU-MET-INTER-002	pmi002	$\mathbf{ZPR-6/10}$	$\mathrm{SS}_{\mathrm{reflector}}$

Criticality benchmarks

Cr Benchmarks

Cr Benchmarks

Cr Benchmarks

Cr Benchmark

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

NATIONAL LABORATORY

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

- Oktavian-Cr leakage experiment (40 cm diameter chromium sphere) is not in SINBAD.
- New model was developed by Bor Kos (JSI) based on previous work by A. Milocco with explicitly modelled source:
 - Analysis in time-domain is crucial subsequent conversion into the energy domain.
 - Resolution-broadening is needed to reproduce the elastic peak (asymmetric resolution function?).

ktavian-Cr leakage experiment calls for mino adjustment in inelastic neutron spectra

This fixes leakage...

This fixes leakage...

... and doesn't break criticality.

NATIONAL LABORATORY

... and doesn't break criticality.

NATIONAL LABORATORY

... and doesn't break criticality.

Conclusion

- **New evaluated files** for stable chromium isotopes represent a major improvement compared to existing files: Data agreement and Performance
- Oktavian benchmark revealed the need for minor adjustment in inelastic neutron spectra in the initial trial evaluation. The change was implemented and good performance was achieved.
- Importance of <u>complementary benchmarks</u> that can probe different energy regions and different reactions
- New evaluations of Cr isotopes perform well for
 - suite of Cr-sensitivity criticality benchmarks improving substantially the outliers (<u>PMI-002 is now within uncertainty</u>)
 - 14 MeV leakage benchmarks.
- **Submitted** to ENDF/B library and IAEA for testing and distribution
- Article in final stages of preparation to be submitted to <u>Nuclear Data Sheets</u>

Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The U.S. Department of Energy Nuclear Criticality Safety Program sponsored the work presented in this paper.