

The impact of updated Cr and Fe cross sections for fusion applications

Tim Bohm, Mohamed Sawan, Jeremiah Oldenburg

With collaborations from IAEA-FENDL and INDEN Project: A. Trkov, R. Capote

> U.S. National Nuclear Data Week/CSEWG Meeting Online November 30-December 4, 2020

Bohm

1

Outline

- 1) Introduction
- 2) Nuclear data libraries examined
- 3) Benchmark/Systems Analyzed:
 - ITER-1D computational benchmark
 - ITER-3D computational benchmark
 - FNSF-3D computational benchmark
 - Sajo1993 Cf-252 iron sphere experimental benchmark
- 4) Future Work

Current D-T Fusion Experiments/Reactors

D + T -> He-4 (3.5 MeV) + n (14.1 MeV)

- JET (UK)
- 1983-present
- R_{major}=3 m
- Vol_{plasma}=100 m³
- pulse ~1 sec
- •16 MW_{fusion}
- ITER (France)
- under construction
- R_{major}=6 m
- Vol_{plasma}=840 m³
- pulse ~400-600 sec
- $\bullet 500 \ \text{MW}_{\text{fusion}}$

Important Fusion Neutronics Responses

Neutron flux/fluence

• structure, magnets

Total nuclear heating (neutron+photon)

- coolant system design, thermal stress, etc. for structure, magnets
- Tritium production (neutron)
 - breeding fuel, environmental concerns
- Radiation damage/dpa (neutron)
 - structural material, magnet degradation
- Helium production (neutron)
 - re-weldability
- Radiation dose (neutron+photon)
 - insulators, electronics, personnel
- Activation
 - shutdown dose-maintenance robotics, personnel
 - decay heat-safety (LOCA, LOFA)
 - radioactive waste disposal, recycling

Nuclear heating in ITER FW/Shield Block

Tritium production in FNSF breeding channel

FENDL Library

- The Fusion Evaluated Nuclear Data Library (FENDL) is an international effort coordinated by the IAEA Nuclear Data Section
- Assembles a collection of the best nuclear data from national cross section data libraries for fusion applications
 - ENDF/B (US), JENDL (Japan), JEFF (Europe), TENDL (EU), RUSFOND/BROND (Russia)
- Process uses **fusion specific** experimental and calculational benchmarks to evaluate the data
- Data available on-line:

Hot Topics * ENDT/D*VILT	TENDEROTZ * SENDER * IDAN	DC News # 30 year anniversary of N	53, Julie 2014	
CD/DVD with documentation, data, codes, etc.	NEW	JEFF-3.2 - Joint Evaluated Fission and F IRDFF - International Reactor Dosimetry CD/DVD-ROMs available for on-line dow Portable Empire-3.2.2 for Windows - nu	usion File, coord. by NEA Data Bar and Fusion File v1.03 [page] [archi nloading [page] clear reaction model code system fi	k, 2014 [page] [archive] [retrieve] ve] [retrieve] or data evaluation [page] [download]
Quick Links	Main All Reaction D	ata Structure & Decay by A	pplications Doc & Codes	Index Events Links News
DS-LID tomic Mass Data Centre INDA	EXFOR Experimental nucles data	ar reaction LiveChart of M	luclides	CINDA Nuclear reaction bibliography
erence cross section ROSG-2000 MPIRE-3.2	Evaluated nuclear n libraries	eaction ENSDF evaluated nuclear str	ucture and decay data (+XUNDL) **	NSR Nuclear Science References *
DF Archive DF Retrieval DF-6 Codes	NuDat 2.6 selected evaluated nuclear structure data **	RIPL reference parameters for nuclear model calculations	IBANDL Ion Beam Analysis Nuclear Data Library	Charged particle reference cross section Beam monitor reactions
IDVER	PGAA Prompt gamma rays from neutron capture	FENDL 3.0 Fusion Evaluated Nuclear Data Library, Version 3.0	Photonuclear cross sections and spectra up to 140MeV	IRDFF International Reactor Dosimetry and Fusion File
ISDF ASCII Files	NAA Neutron Activation Analysis Portal	Safeguards Data recommendations, August 2008	Medical Portal Data for Medical Applications	Standards - Neutron cross-sections, 2006 - Decay data, 2005
A constraint of the second sec	*Database of the IAEA Verna IAEA Nuclear Data Sec Verna Nation, Stat Molecular Data	"Database at the US NADC tion	on Nuclear Structure & Decay Data Network	werta Computer

Source of FENDL Data

65/180 isotopes in FENDL-3 come from the ENDF/B-VII.1 library > See Table 1 in INDC(NDS)-0628

• Some key isotopes for this work:

Isotope	FENDL-2.1*	FENDL-3.1
H-1	JENDL-3.3	ENDF/B-VII.1
0-16	ENDF/B-VI.8	ENDF/B-VII.1
Cr-52	ENDF/B-VI.8	ENDF/B-VII.1
Fe-56	JEFF-3	JEFF-3.1.1
Ni-58	JEFF-3	ENDF/B-VII.0
Cu-63,65	ENDF/B-VI.8	ENDF/B-VII.0

*FENDL-2.1 is the reference library for ITER neutronics

Bohm CSEWG Meeting 2020

ENDF/B-VIII.0 Library

Released 2018, ACE formatted data available on-line: •https://nucleardata.lanl.gov

Initial testing indicated deficiencies in XS for iron

- revealed in iron transmission experiments with Cf-252 source
- inelastic XS was too high

➢Other structural elements' XS are being re-examined

• Cr, Co, Ni, Ti, Pb

Candidate replacements for some isotopes of Fe and Cr have been made available for this work* (provided by A. Trkov)

• A. Trkov, R. Capote, "INDEN (Post-CIELO) ⁵⁶Fe Evaluation", Consultants Meeting on the FENDL Library for fusion neutronics calculations, 15-18 Oct., IAEA, 2018.

• G.P.A Nobre, D.A. Brown, "Nuclear Data Evaluations of Structural Materials in BNL", INDEN Consultants Meeting on Evaluation of Structural Materials, Oct. 29-Nov. 1, IAEA, 2018.

- A. Trkov et al. "Improved evaluations of neutron induced reactions on ⁵⁷Fe and ⁵⁶Fe targets, Consultants Meeting of INDEN on Evaluated Nuclear Data of the Structural Materials, 2-5 Dec., IAEA, 2019.
- G.P.A. Nobre et al. "Status of Cr Evaluations", Consultants Meeting of INDEN on Evaluated Nuclear Data of the Structural Materials, 2-5 Dec., IAEA, 2019.
- * See the IAEA INDEN web site: https://www-nds.iaea.org/INDEN/

Goal of this work

- Look at the neutronics impact of using the updated neutron libraries in a realistic model of fusion systems using MCNP
 - Libraries examined:
 - <u>Neutron:</u> standard MCNP id
 - 1. FENDL-2.1 (21c)
 - 2. FENDL-3.1 (31c)-current version 3.1d
 - 3. ENDF/B-VII.1 (80c)
 - 4. ENDF/B-VIII.0 (00c)
 - 5. New candidate evaluations for Fe, Cr <-- New work
 - <u>Photon*:</u>
 - 1. mcplib84 (84p)

*Previous work has shown that mcplib84 produces results similar to the newer MCNP eprdata12 library, the latest MCNP photon library (eprdata14) has not been tested yet

*Bohm T.D, Sawan M.E. "The impact of updated cross section libraries on ITER neutronics calculations", Fusion Science and Technology, Vol 68 p. 331-335, 2015.

ITER 1-D Cylindrical Calculation Benchmark

- Based on an early ITER design
 Developed for the FENDL evaluation process
- Simple but realistic model of ITER with the Inboard and Outboard portions modeled with the plasma in between
- D-T fusion (14.1 MeV neutrons)
- Flux (neutron and photon), heating, dpa, and gas production calculated

M. Sawan, FENDL Neutronics Benchmark: Specifications for the calculational and shielding benchmark, INDC(NDS)-316, December 1994

ITER 1-D Cylindrical Benchmark continued

Plasma

Results: Neutron Flux

- With ENDF/B-VIII.0 we see neutron fluxes up to 8% lower than FENDL-2.1
- ENDF/B-VIII.0+CrNew,FeNew closer to FENDL-2.1 but see structure at VV, TFC
- FENDL-3.1+CrNew, FeNew quite close to FENDL-2.1 but structure at VV

THE UNIVERSITY

WISCONSIN

Results: Total Nuclear Heating

- With FENDL-3.1, we see heating up to 6% higher than FENDL-2.1
- With ENDF/B-VIII.0 we see heating up to 8% lower than FENDL-2.1
- ENDF/B-VIII.0+CrNew,FeNew closer to FENDL-2.1 but see structure at VV, TFC

WISCONSIN

FENDL-3.1+CrNew, FeNew quite close to FENDL-2.1 but structure at TFC Bohm CSEWG Meeting 2020

3-D ITER CAD Model

- Based on UW BL-Lite model with added IB Toroidal Field Coil (TFC) volume
- All BMs homogenized and consist of 5 volumes (Be layer, Cu layer, SS finger layer, Beam layer, SB)
- VV consists of 3 homogenized parts (inner shell, body, outer shell)
- Model has 723 volumes, 12067 surfaces, 29467 curves

Results- total nuclear heating IB TFC

Library	Tally IB TFC (W/cm ³)	Ratio	
FENDL-2.1	3.72244E-05	1	
FENDL-3.1	3.73618E-05	1.004	
ENDF/B-VII.1	3.62283E-05	0.973	
ENDF/B-VIII.0	3.44391E-05	0.925	
ENDF/B-VIII.0 + CrNew,FeNew	3.61820E-05	0.972	
FENDL-3.1 + CrNew,FeNew	3.70739E-05	0.996	

Max. relative error <0.66%

- With FENDL-3.1, we see heating the same as FENDL-2.1 at IB TFC
- With ENDF/B-VIII.0 we see heating 7% lower than FENDL-2.1
- ➢ With ENDF/B-VIII.0+CrNew,FeNew we see heating 3% lower than FENDL-2.1
- With FENDL-3.1+CrNew, FeNew we see heating the same as FENDL-2.1
- This is consistent with what we saw in 1-D model at the front of the TFC

Results: Iron dpa near BM14 (ratios)

Location	F-2.1	E-VII.1	F-3.1	E-VIII.0	E-VIII.0 + CrNew,FeNew	F-3.1 + CrNew,FeNew
Finger	1.000	1.062	0.997	1.000	0.997	0.997
SBback	1.000	1.015	1.009	0.964	1.000	0.995
VVshell	1.000	1.019	1.010	0.968	1.004	0.998

Maximum relative error <0.10%

- For ITER, the main concern for dpa is at the VV shell
 With ENDF/B-VIII.0 we see 3-4% lower dpa than the other libraries
 - In general, close agreement among the other libraries at all locations
- ➢ With ENDF/B-VII.1 we see an outlier at the BM Finger

Results: He production near BM14 (ratios)

Location	F-2.1	E-VII.1	F-3.1	E-VIII.0	E-VIII.0 + CrNew,FeNew	F-3.1 + CrNew,FeNew
Finger	1.000	1.081	1.042	1.078	1.136	1.157
SBback	1.000	1.048	1.056	1.037	1.095	1.108
VVshell	1.000	1.079	1.057	1.066	1.127	1.144

Maximum relative error <0.13%

- For ITER, the main concern for He production is at the back of the SB and the VV shell for re-welding
 Overall, He production is 4-8% higher with previous libraries
- Libraries using the new Cr and Fe evaluations are 10-16% higher than that calculated with FENDL-2.1
 - We will need to check the He production XS and spectra to determine the underlying cause

Results: He production near BM14 (ratios)

Calculate He production using FENDL-2.1 for transport, and various libraries for He production response function (mt 207) in SS-316 L(N)-IG (17.5 w/o Cr)

Mt 207 Library	Finger	SBback	Vvshellback	
FENDL-2.1	1.000	1.000	1.000	SBback VVshell
ENDF/B-VII.1	1.071	1.048	1.073	Finger
FENDL-3.1d	1.041	1.032	1.037	
ENDF/B-VIII.0	1.080	1.057	1.086	
E-VIII.0 + CrNew,FeNew	1.134	1.082	1.129	
F-3.1 + CrNew,FeNew	1.149	1.098	1.141	Maximum relative error <0.13%

➢With the CrNew,FeNew evaluations, we see most of the differences in He production at these locations are due to the change in He production XS

Other Work-FNSF Computational Benchmarking

Nuclear heating at VV and Magnet coil case:

Library	IB VV (MW)	Ratio	IB Coil Case (MW)	Ratio
FENDL-2.1	1.7573E-01	1	7.1836E-05	1
ENDF/B-VIII.0	1.8418E-01	1.048	7.7464E-05	1.08
FENDL-3.1	1.8521E-01	1.054	8.1532E-05	1.14
ENDF/B-VII.1	1.8038E-01	1.026	7.7310E-05	1.08
E-VIII.0+CrNew,FeNew	1.8439E-01	1.049	7.7924E-05	1.09
F-3.1+CrNew,FeNew	1.8384E-01	1.046	7.8837E-05	1.10

Surface Index

- With FENDL-3.1d, we see a close match to fluxes calculated with FENDL-2.1
- With ENDF/B-VIII.0, we see lowest fluxes in the E=1 to 10 MeV region vs. FENDL-2.1
- > With new evaluations added, see results similar to FENDL-3.1 in E=1-10 MeV

WISCONSIN

Future Work

- Repeat previous calculations with updated O-16, O-17 XS
 Create an FNSF-1D model:
 - The current 3-D model is too computationally expensive for XS studies

- Currently 85 radial zones
- Includes SiC flow channel inserts in breeding zone
- Includes face plates for SR, VV, Ltshield
- MCNP materials created with PyNE
- Create an updated ITER-1D model:

• The current 1-D model is an early design so it needs to be updated to the current design

Backup slides

UW Neutronics Capabilities (3-D)

- DAGMC (detailed 3-D CAD based Monte Carlo transport)
 - Transports directly in the CAD model (not a translator)
 - Handles complex surfaces without simplification
 - Couples to MCNP, Geant4, FLUKA, SHIFT, OpenMC
 - Provides a common domain for coupling to other analysis
 - <u>http://fti.neep.wisc.edu/ncoe/</u>
 - http://github.com/svalinn
- 3-D CAD model based analysis:

ITER BM08

-4

2

Bohm CSEWG Meeting 2020

Nuclear heating mapped to ANSYS mesh for thermal analysis

ITER-1D Neutron Flux (isotopic substitution study)

- With FENDL-3.1, we see neutron fluxes up to 8% higher than FENDL-2.1
- With ENDF/B-VIII.0 we see neutron fluxes up to 8% lower than FENDL-2.1
- ENDF/B-VIII.0+CrNew, FeNew closer to FENDL-2.1 but see structure at VV, TFC
- FENDL-3.1+CrNew, FeNew quite close to FENDL-2.1 but structure at VV

23

Bohm CSEWG Meeting 2020

ITER-1D Results: dpa (% difference vs. FENDL-2.1)

	FENDL- 2.1	FENDL- 3.1d	ENDF/B- VII.1	ENDF/B- VIII.0	FENDL-3.1d +CrNew,FeNew	ENDF/B-VIII.0 +CrNew,FeNew
IB						
FW Cu (Cu)	0	-0.32	0.22	-1.16	-0.26	-1.03
FW SS (Fe)	0	-0.07	5.58	0.15	-0.47	-0.37
VV Inc. (Ni)	0	3.03	0.09	-7.96	0.22	-2.24
VV SS (Fe)	0	2.74	3.25	-3.69	1.52	1.66
Mag. (Cu)	0	4.52	-1.01	-8.96	1.04	-1.47
OB						
FW Cu (Cu)	0	-0.28	0.14	-1.04	-0.23	-0.94
FW SS (Fe)	0	-0.03	5.66	0.10	-0.49	-0.40
VV Inc. (Ni)	0	3.07	0.04	-7.95	0.19	-2.33
VV SS (Fe)	0	2.82	3.28	-3.44	1.57	1.76
Mag. (Cu)	0	6.30	-1.17	-9.27	1.60	-1.14

Max. relative error <0.15%

- different neutron flux and spectrum at FWSS, VV, magnet
- dpa values higher for FENDL-3.1d than FENDL-2.1 (up to 6%)
- dpa values lower for ENDF/B-VIII.0 than FENDL-2.1 (up to 9%)
- ➢ With the new evaluations for Cr and Fe, dpa values within 2.4%

ITER-1D Results: He production (% diff. vs. FENDL-2.1)

	FENDL-	FENDL- 3.1d	ENDF/B-	ENDF/B-	FENDL-3.1d +CrNew.FeNew	ENDF/B-VIII.0 +CrNew.FeNew
IB						
FW Be	0	0.04	0.60	0.80	0.08	0.92
FW CuBeNi	0	0.39	0.91	3.70	0.49	3.84
FW SS316	0	4.24	6.37	6.16	13.00	10.30
VV Inconel	0	17.96	13.58	6.84	19.41	15.28
VV SS316	0	8.06	4.52	1.26	11.28	8.75
Mag. (Cu)	0	5.02	-0.20	-1.17	1.91	4.95
OB						
FW Be	0	0.07	0.50	0.90	0.12	0.99
FW CuBeNi	0	0.47	0.87	3.75	0.54	3.85
FW SS316	0	4.41	7.09	6.98	14.16	11.62
VV Inconel	0	17.98	13.51	6.96	19.33	15.33
VV SS316	0	8.07	4.61	1.49	11.29	8.71
Mag. (Cu)	0	6.86	-0.62	-1.52	2.55	5.72

Max. relative error <0.19%

- He production values higher for FENDL-3.1d than FENDL-2.1 (up to 18%)
- He production values higher for ENDF/B-VIII.0 than FENDL-2.1 (up to 7%) except magnet (lower)
- Libraries with the new Cr and Fe evaluations:
 - He production up to 19% higher in VV Inconel than FENDL-2.1
 - He production 9-14% higher in SS316

He production XS (mt 207) SS-316 L(N)-IG (17.5 w/o Cr)

THE UNIVERSITY

Wisconsin

Bohm CSEWG Meeting 2020

He production XS (mt 207) Cr and Fe

3-D FNSF Model

- U.S. Fusion Nuclear Science Facility (step to DEMO)
- Single sector (22.5 deg.) neutronics model:
 - No ports, 2 cm straight gaps between sectors
 - 518 MW fusion power, 3 region plasma source model
 - PbLi breeding region detailed, other components partially homogenized

A. Davis et al. "Neutronics aspects of the FESS-FNSF", *Fusion Engineering and Design*, 2017.
T. Bohm et al. "Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, *Fusion Science and Technology*, 2019.

FNSF Results- IB neutron flux

WISCONSIN

- With FENDL-3.1 neutron library see neutron fluxes up to 12% higher than FENDL-2.1
- With ENDF/B-VIII.0 we see neutron fluxes 5% lower at coil case
- Adding the new Cr and Fe evaluations brings neutron fluxes closer to FENDL-2.1
- These trends are similar to what was seen in the ITER-1D model

FNSF Results-total nuclear heating

Library	IB VV (MW)	Ratio	IB Coil Case (MW)	Ratio
FENDL-2.1	1.7573E-01	1	7.1836E-05	1
ENDF/B-VIII.0	1.8418E-01	1.048	7.7464E-05	1.08
FENDL-3.1	1.8521E-01	1.054	8.1532E-05	1.14
ENDF/B-VII.1	1.8038E-01	1.026	7.7310E-05	1.08
E-VIII.0+CrNew,FeNew	1.8439E-01	1.049	7.7924E-05	1.09
F-3.1+CrNew,FeNew	1.8384E-01	1.046	7.8837E-05	1.10

VV is 3CrFS, WC filler, He cooled Magnet Coil Case is SS316 VV relative error <0.03% Coil Case relative error <1.3%

- At the VV, heating values are ~5% higher than FENDL-2.1 for all libraries except ENDF/B-VII.1 (~3%)
- At the CC, heating values are 8-14% higher as compared to FENDL-2.1
- This is different than seen with the ITER-1D model (tended to be lower than FENDL-2.1)

Results-Tritium Breeding Ratio

FNSF uses PbLi for breeding:

- 84.3 atomic% Pb
- 15.7 atomic% Li (enriched to 90% Li-6)

Library	IB TBR	Ratio	OB TBR	Ratio
FENDL-2.1	0.2961	1	0.8135	1
ENDF/B-VIII.0	0.3003	1.014	0.8265	1.016
FENDL-3.1	0.3000	1.013	0.8274	1.017
ENDF/B-VII.1	0.2997	1.012	0.8241	1.013
E-VIII.0+CrNew,FeNew	0.2987	1.009	0.8235	1.012
F-3.1+CrNew,FeNew	0.2986	1.008	0.8239	1.013

Max. relative error <0.01%

• We see TBR ~1-1.7% higher than that calculated with FENDL-2.1

FNSF Results-Fe dpa (ratio)

Library	IB FW	IB VV
FENDL-2.1	1	1
ENDF/B-VIII.0	1.010	1.060
FENDL-3.1	1.001	1.092
ENDF/B-VII.1	1.060	1.092
E-VIII.0+CrNew,FeNew	1.008	1.083
F-3.1+CrNew,FeNew	1.003	1.083

FW is MF82H (7.5 w/o Cr), VV is 3CrFS (3 w/o Cr)

VV relative error <0.27%

- At the FW, dpa values are very close except for ENDF/B-VII.1
- At the VV, dpa values are 6-9% higher for all libraries compared to FENDL-2.1
- With the new evaluations for Cr and Fe:
 - Fe dpa values are close at the FW
 - Fe dpa values are 8% higher at the VV

FNSF Results-He production (ratio)

Library	IB FW	IB VV
FENDL-2.1	1	1
ENDF/B-VIII.0	1.093	1.120
FENDL-3.1	1.006	1.002
ENDF/B-VII.1	1.075	1.093
E-VIII.0+CrNew,FeNew	1.127	1.137
F-3.1+CrNew,FeNew	1.135	1.151

FW is MF82H (7.5 w/o Cr), VV is 3CrFS (3 w/o Cr)

VV relative error <0.27%

- At the FW, He production values are similar for FENDL-3.1d but the others are 8-14% higher
- At the VV, He production values are similar for FENDL-3.1d but the others are 9-15% higher
- > With the new evaluations for Cr and Fe, He production is 13-15% higher

