LA-UR-20-XXXXX

LANL experimental updates on LENZ and DICER in FY20

LENZ collaboration:H.Y. Lee, S. Kuvin, B. DiGiovine, A. Georgiadou, D. Votaw, L. Zavorka&Theory Division:T. Kawano, M. HermanDICER collaboration:P. Koehler, B. DiGiovine, et al.

US NDP Nuclear Data Week: CSEWG annual meeting Nov. 30 2020

red-postdocs, & currently at ORNL

LENZ

Contents

- Double differential cross sections on 54 Fe(n,p) and 56 Fe(n, α)
- Validation of neutron induced reactions on ^{nat}C , using an active target at 0.4 MeV < E_n < 22 MeV
- Progress report on ^{56,58,59,60}Ni(n,p) reaction studies at WNR
- Progress report on DICER project at Lujan Center

hotLENZ: radioactive nucleus measurement

ALSOLENZ: around 90-deg. measurement

⁵⁴Fe(n,p)⁵⁴Mn yield comparison with MCNP simulation

Hye Young Lee (LANL)

*from ENSDF

⁵⁴Fe(n,p) LENZ data analysis

15

Energy (MeV)

A thick ⁵⁴Fe foil (2.2 mg/cm²) and a high level density in ⁵⁴Mn resulted in substantial experimental Q-value resolutions, therefore the rigid peak fitting procedure is applied with simulation/measurement-guided constraints.

⁵⁴Fe(n,p) angular distributions (d σ /d Ω (b/sr) vs. θ_{lab} (deg))

-dots are LENZ measurements

-Solid lines show newly calculated angular distributions, where Legendre coefficients are explicitly calculated. Details of this work will be presented by H.I. Kim in Evaluation Session. Red: (n,p₀), Blue: (n,p₁), Yellow: (n,p₂), Green: (n,p₃)

After performing Pulse Shape Discrimination (PSD) method, alpha reaction yields are plotted for (n,α_0) , (n,α_1) , (n,α_2) , ... fitting procedures for obtaining discrete cross sections

Los Alamos National Laboratory

Diamond detector response function: energy spectrum taken with neutrons from 90LWNR prompt γ-flash \sim 1 hour of beam with 25 the ϕ = 6 mm collimation **S**3 4 X4 mm², ¹²C(n,α)⁹Be_{as} 500 µm thick DSSD ^{12}C 3 α breakup 20 chemical Energy (MeV) vapor Light Charged Particles with Neutron Beam deposition 15 (CVD) ¹²C(n,p) and ¹²C(n,d) Diamond 10 ¹³C(n,α)¹⁰Be_{as} detector C(n,el) Multiple Scatter 5 50 100 150 300 200 250 350 40 Time Relative to T0 (ns) n edet Detected Energy (MeV) Entries 3.1 $^{12}C(n,\alpha_0), Q = -5.77 \text{ MeV}$ Jetected Energy (Me Mean x Mean $^{12}C(n,n)$ resonances by 25 RMS y detecting only recoiling ${}^{12}C$ 20 detected both recoiling ¹⁴N(n,p), ⁹Be and ⁴He at all angles 15 -0.63 MeV 10 5 300 400 500 100 160 600 60 80 120 140 180 200

Time of Flight w.r.t.g

nye roung nee (naivn)

Diamond data- Forward Propagation Analysis using Geant Incident Neutron Energy = 0 – 8 MeV

Geant4: -ENDF-B.VIII.0 library -Multi-step process of the ¹²C breakup into 3 α 's, ¹²C(n,n α)⁸Be-> α + α , default γ -decay of excited states in ¹²C above alpha separation energy, etc. -set the environment variable to use NRESP package

Neutron elastic scattering on ¹²C: the energy of the scattered neutron is sensitive to the scattering angle, the angular distribution of the outgoing neutron leaves an imprint of the missing energy on the detected ¹²C recoil energy (E_{det})

$$\cos(\theta_{cm}) = 1 - \left(\frac{E_{det}}{E_n} \frac{(M_n + M_{12C})^2}{(2M_n M_{12C})}\right)$$

Diamond data- validation of ^{nat}**C**(n,x) reactions: Elastic Scattering

Diamond data-^{12,13}**C(n,z) reaction evaluation** Black dots: LANSCE data

Diamond data- R-matrix analysis on ¹³**C(n,\alpha_0):** (preliminary)

-Used the AZURE code with initial parameters guided by the ENDF R-matrix evaluation -Still progressing in fitting the (n,α_0) data by varying parameters and different available reaction data sets

^{56,58,59,60}Ni(n,z) LENZ data status

-⁵⁹Ni(n,p) and (n,a) LENZ data: analysis is underway and an additional measurement with a thicker target (91 μg/cm2) is scheduled in Dec 2020 @ 15R -⁵⁸Ni(n,p) and (n,a) LENZ data: analysis is underway, largest stable background -⁶⁰Ni(n,p) and (n,a) LENZ data: analysis is underway -⁵⁶Ni(n,p) hotLENZ data: scheduled to run with IPF target in beam in Dec. 2020 @ 90L

PI: Paul Koehler

DICER Update

- 1-mm-diameter binocular collimator system installed and successfully tested Measurements on ⁹⁵Mo and ²⁰⁹Bi in agreement with previous results Cuts experiment time in half and minimizes required sample
- Three acceptable chemistries for ⁸⁸Zr sample identified DICER experiment scheduled for summer 2021
- Completed DICER measurement with liquid argon sample Motivated by DUNE neutrino experiment, led by UC Davis

