Berkeley Nuclear Data Measurements Program

30 November 2020

0 **US National Nuclear Data Week**

Measurement Campaigns

Fission

FLUFFY - Independent fission product yields for short-lived isotopes
 See Eric Matthews (spoke earlier today) for more info

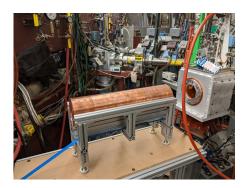
Neutron Scattering

• GENESIS - Inelastic scattering on ⁵⁶Fe, ²³⁸U for fast-reactor applications

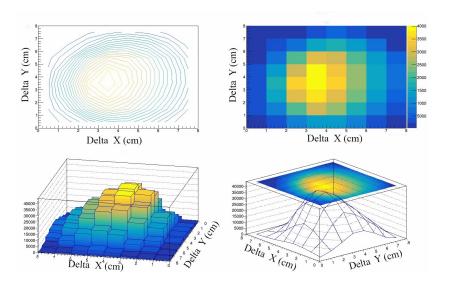
Isotope Production

- 75 As(p,x)⁷²Se & 75 As(p,x)⁶⁸Se *PET Imaging*
- ^{*nat*}Sb(p,x)^{117m}Sn *Therapeutic/Diagnostic*
- 226 Ra(n,2n) 225 Ra -> 225 Ac *Targeted Alpha Therapy*
- Secondary Neutrons from Deuteron Breakup
- 232 Th(p,4n) 229 Pa -> 229 Th Long lived 225 Ac generator

Inelastic Neutron Scattering using the GENESIS Array



30 November 2020 US National Nuclear Data Week



Characterizing the Array

- Neutron source: thick target deuteron breakup
- Collimator assembled & characterized for ~4 cm beamspot
- Preliminary runs helped verify design (using GEANT)
- Full measurements this Spring!

30 November 2020 US National Nuclear Data Week

Isotope Production Measurements

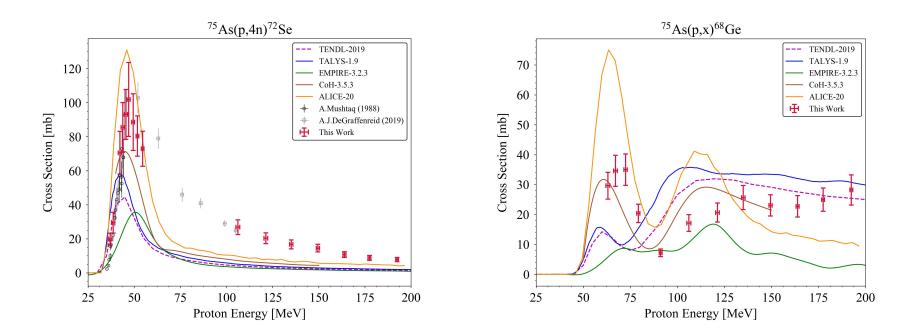
30 November 2020 US National Nuclear Data Week

Jonathan Morrell

0.0000

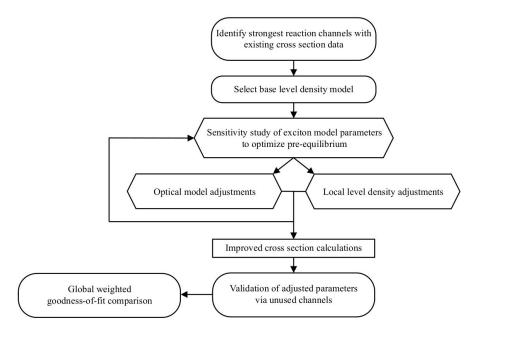
Tri-Lab Nuclear Data Collaboration

- Collaborators and facilities at LBNL, BNL and LANL
- Analysis by grad. students at LBNL/UCB 2 PhD theses
- Stacked-target cross section measurements for critical isotope production pathways
 - Mix of thin-target activation foils with energy "degraders"
- Protons from 0-200 MeV
- Funded by DOE Isotope Program



30 November 2020 US National Nuclear Data Week

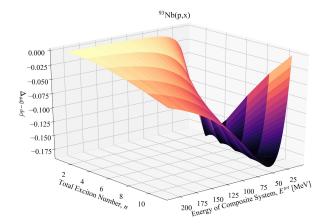
⁷⁵As(p,x) Reactions from 35-200 MeV


Large body of high-energy reaction data (many channels, up to 200 MeV)

Modeling is particularly sensitive to pre-equilibrium

Pre-equilibrium Reaction Modeling

- Parameter adjustment via TALYS (well-documented, easy to use)
- Collaboration with Dr. Arjan Koning (Head of the IAEA Nuclear Data Section)
- Level density and exciton model parameters adjusted to match strongest independent channels
- Validation using cumulative channels

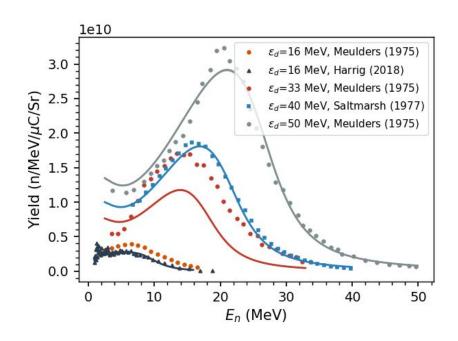


Procedure Applied to ⁹³Nb(p,x)

- 2x goodness-of-fit improvement over default
- Extract trends in exciton model parameters

30 November 2020 US National Nuclear Data Week

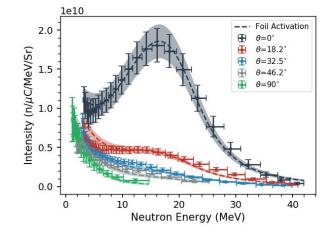
Jonathan Morrell

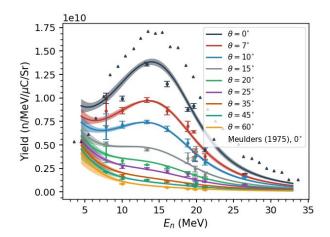

200

Deuteron Breakup Modeling

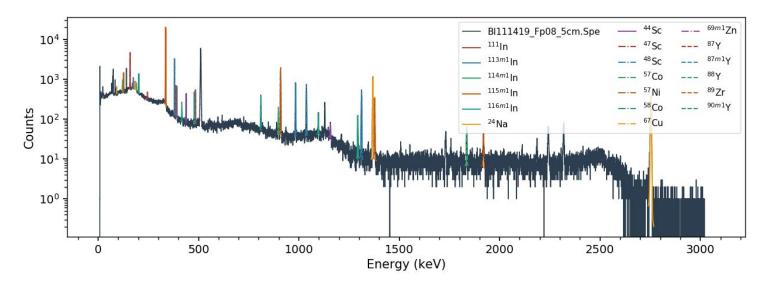
- *Objective*: develop simplified physics-based model that can be adjusted (parameterized) to reproduce experimental data
- Breakup model based on 1947 deuteron "stripping" model by Serber
- 5 adjustable parameters for fitting neutron yield data
- Non-breakup reactions modeled with TALYS
- Good results, but 33 MeV dataset seems off

$$\frac{d^2\sigma_{BU}(\epsilon_d)}{d\Omega dE_n} = \sigma_{BU}(\epsilon_d) P(E_n) P(\theta)$$



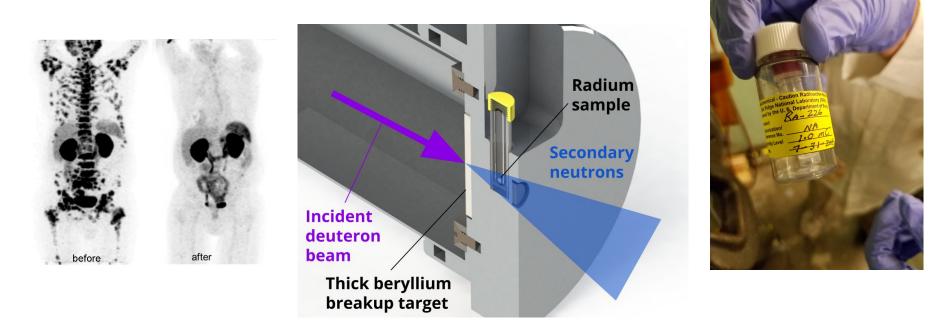


Deuteron Breakup Measurements


- Measured double-differential neutron spectrum from 0-90° at 33 & 40 MeV (deuteron energy)
- Parameterized breakup model used to "unfold" neutron spectrum with activation
- Confirmed with time-of-flight

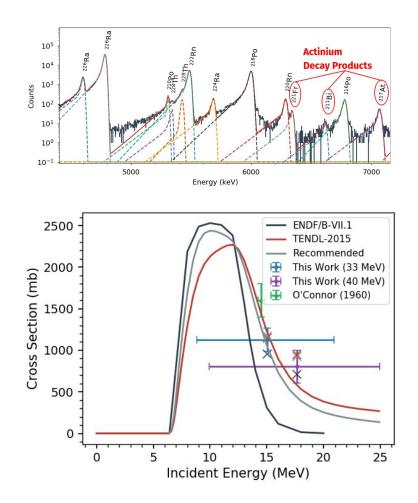
New Activation Analysis Suite: Curie

 Open-source python code developed for activation analysis. Includes forward-modeling γ-spectroscopy, Bateman eqn. Decay chain solver (for R meas), physical efficiency model (Vidmar)


Download: https://github.com/jtmorrell/curie

²²⁵Ac Production from ²²⁶Ra(n,2n)

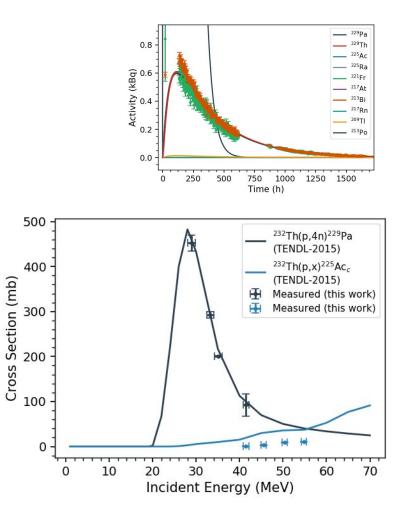
- Extremely promising for targeted alpha therapy
- Every production pathway is challenging (Th/Ra targets)
- ²²⁶Ra(n,2n) followed by β⁻ decay utilizes high-intensity deuteron breakup beam at 88" cyclotron



US National Nuclear Data Week

Measured ²²⁶Ra(n,2n) Cross Sections

- Production rate determined through α-spectroscopy
- Precise characterization of breakup spectrum allows for accurate xs determination
- Measurements show good agreement with TENDL, possible discrepancy with ENDF
- Useful for optimizing production target



²³²Th(p,4n)²²⁹Pa Generator for ²²⁵Ac

- ²²⁹Th (t_{1/2} = 7932 y) could be a useful generator for ²²⁵Ac
- Goal to measure ²²⁹Th/Pa production from ^{232/230}Th targets
- First stacked-target measurement (on ²³²Th) successful barely
 - Chem. lab (for Pa/Th separation) shut down day of measurement
 - Channel identified through
 ²²⁵Ac decay products (with HPGE)
- Future measurements with ²³⁰Th

Questions?

30 November 2020 US National Nuclear Data Week

Acknowledgements

• This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics.

30 November 2020 US National Nuclear Data Week

