

(Richard) James deBoer Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame CSEWG 2020, Online

Partial and differential (α , n) cross section measurements on boron, carbon, and oxygen isotopes

This research was supported by the National Science Foundation through Grant No. Phys-2011890, and the Joint Institute for Nuclear Astrophysics through Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).

A brief introductions to the state of (α, n) reactions in the literature

- Many of the high energy resolution (α, n) measurements were made at ORNL in the 6o's and 7o's using a flat efficiency graphitesphere neutron counter.
- These are all **TOTAL** cross section measurements

A brief introductions to the state of (α, n) reactions in the literature

- In the 70's several differential and partial cross section measurements were made by Van der Zwan and Geiger at Chalk River
 - Stilbene crystals
 - Spectrum Unfolding
 - Partial and differential

A brief introductions to the state of (α, n) reactions in the literature

- Limited angular coverage
- Can't convert to angle integrated cross section
- Are usually not used in the compilations

Partial Cross Sections

Pigni et al. (2020)

Partial cross sections in the evaluations are based on statistical model calculations, which are not very accurate (order of magnitude).

How are these partial cross section estimated in the compilations?

- Total cross section is measured
- Branching ratio is then calculated from a statistical model
- But statistical models are not very accurate for light nuclei!
 - Population of different resonances

The need for partial cross sections

- Neutron energy spectrum for a Plutonium Oxide matrix
 - Pu decay produced neutrons up to about 9 MeV
- Use of partial ^{17,18}O(α,n) cross sections from JENDL-AN give a very poor reproduction of the thick target data
- Need partial cross sections

Pigni et al. (2020)

Background reactions in neutrino detectors

• Actinide decay chains produce α -particles up to 9 MeV (Radon \rightarrow Po)

• ${}^{13}C(\alpha,n){}^{16}O$ (KAMLAND), ${}^{17}O(\alpha,n){}^{20}Ne$, ${}^{18}O(\alpha,n){}^{21}Ne$ (SNO) act as a neutron background sources

• Need partial cross sections in order to simulate accurately

KAMLAND website

Gando *et al.* (2011)

Neutron Data Evaluation

ENDF/B VIII, Brown et al. (2018)

Febbraro et al. (2020)

Need ground state partial cross section

Nuclear Astrophysics

- First star nucleosynthesis: ¹⁰B(α,n)¹³N,
 ¹¹B(α,n)¹⁴N
- Primary s-process reactions:
 ¹³C(α,n)¹⁶O and ²²Ne(α,n)²⁵Mg
- Secondary *s*-process reactions: ${}^{17}O(\alpha,n){}^{20}Ne, {}^{18}O(\alpha,n){}^{21}Ne,$ ${}^{25}Mg(\alpha,n){}^{28}Si, {}^{26}Mg(\alpha,n){}^{29}Si$

The Red Giant, U Cam, ESA/NASA

How can we get this data in an efficient and cost effective way?

- The ORNL Deuterated Spectroscopic Array ----ODeSA
 - High efficiency, cost effective detector
- High beam current, good energy resolution accelerator
 - Santa Ana Accelerator --- University of Notre Dame
- Up front hurdles: calibration (response matrix) and unfolding algorithms
- 1 to 2 weeks of beam time, full differential and partial cross sections can be measured
- Data analysis is main time component (1-2 years of dedicated graduate student work)

Nuclear Physics

ORNL

Febbraro et al. (2019)

Spectrum Unfolding

Light output spectrum

Neutron Energy Spectrum

Calibrations preformed at the Edwards Accelerator Laboratory at OU

Response matrix

Maximum

Likelihood

Fig. 9. Response matrix generated using a broad energy neutron source from a thick target ${}^{27}\text{Al}(d, n)$ reaction at $E_d = 7.44$ MeV [12].

Secondary y-ray angular distributions

 Provides a complementary method of measuring many excited state reactions

Fig. 5. Reaction scheme for $\alpha + {}^{18}$ O cross sections, including neutron emission. B_{α} and B_n are the α -particle and neutron binding energies, respectively. These values are based on the AME2016 atomic mass evaluation (Wang et al., 2017).

GEANIE HPGe detectors on loan from LANL Aaron Couture

HAGRiD array of LaBr₃ detectors from Kate Jones at UTK

Secondary γ -ray decays from the partial-wave T matrix with an R-matrix application to ${}^{15}N(p, \alpha_1 \gamma) {}^{12}C$

Carl R. Brune[™]

Edwards Accelerator Laboratory, Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA

R. James deBoer[†]

The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

¹³C(α,nγ)¹⁶O
 ¹⁷O(α,nγ)²⁰Ne
 ¹⁸O(α,nγ)²¹Ne
 ²⁵Mg(α,nγ)²⁸Si

AZURE2 R-matrix code azure.nd.edu

¹³C(α,n)¹⁶O

2016 setup

¹⁰B(α,n)¹³N

2017 Setup

Liu et al. (2019)

¹⁷O(α ,n γ)²⁰Ne & ²⁵Mg(α ,n γ)²⁸Si

2018, Secondary γ -ray angular distribution setup with HAGRiD

Kevin Macon

Shahina Shahina

$^{17}O(\alpha, n)^{20}Ne\&$ $^{25}Mg(\alpha, n)^{28}Si$

2018, Close geometry setup

¹⁸O(α,n)²¹Ne

2019 Setup 600 energy points at 10 or more angles from 2 to 8 MeV

Becca Toomey (Rutgers)

GEANIE

data

Measurement Expectations

- Uncertainties
 - Target thickness usually dominates (as usual) --- 5 to 15% level
 - Efficiency uncertainty --- 10% level
 - Relative angular distribution uncertainty --- <u>5</u>% level
 - Unfolding uncertainty --- 5% level
 - Raw stats, usually no problem

What's next?

- ¹³C(α,n)¹⁶O, comprehensive measurement
- Radioactive Ion Beam measurements
- ¹⁹F(α,n)²²Na?
- ⁹Be(α, n)¹²C?
- Higher mass range
- Proton induced reactions?

Neutron Energy (MeV)

Summary

- (α, n) cross sections on light elements are needed for a wide range of applications
- Past measurements are nearly all total cross sections. Partial cross sections are needed!
- A cost effective and efficient solution for (α ,n) measurements
 - Deuterated liquid scintillators for prompt neutron detection
 - HPGe or LaBr₃ for secondary γ-ray detection
 - Notre Dame high current accelerator system (Santa Ana)

