

Update on Atomic Mass Evaluation & NUBASE

F.G. Kondev Physics Division, Argonne National Laboratory

Supported by the Office of Nuclear Physics, Office of Science, DOE

2020 USNDP Meeting, December 3-4, 2020

Atomic Mass Evaluation & NuBase

- Correlations
 - pairing
 - p-n
- Binding energies
 - mass models
 - shell structure
- The limits of existence
 - drip lines
 - specific configurations and topologies
- Reaction & decay phase space
 - Q values
 - decay & reaction probabilities
 - critical to both ENSDF & ENDF

- widely used in astrophysics modeling
- important to applications nuclear energy, stockpile stewardship, nuclear material certification & others
- beneficial to Nuclear Theory development

AME2016 & NUBASE2016

The AME2016 atomic mass evaluation

Meng Wang (王猛)^{1,2;1)} G. Audi (欧乔治)³ F.G. Kondev⁴ W.J. Huang(黄文嘉)³ S. Naimi⁵ Xing Xu(徐星)¹

• led by M. Wang (AME) and G. Audi (NuBase)

Chinese Physics C Vol. 41, No. 3 (2017) 030001

The NUBASE2016 evaluation of nuclear properties^{*}

G. Audi (欧乔治)¹ F.G. Kondev² Meng Wang (王猛)^{3,4;1)} W.J. Huang(黄文嘉)¹ S. Naimi⁵

widely used by broader community & highly cited

AME2020 & NUBASE2020

new AME2020 & NUBASE2020 are near completion

• led by M. Wang (AME) and F.G. Kondev (NuBase)

the new tables will be published in March 2021

- include all recently published data
- fixed known issues in the 2016 tables typos, errors, etc.

Implications for ENSDF

Experimental Data used in AME

Direct methods - mass spectrometry

- TOF & MR-TOF (very fast BUT low precision & resolution)
- Storage Rings (fast & many nuclei at once)
- Penning Traps (relatively "slow" BUT high precision and high resolution)

Indirect methods - reaction and decay energies

- Reaction Energies
 - (n, γ) and (p, γ) are the backbone
 - self-calibrated A(a,b)B vs. C(a,b)D
 - close to stability
- **Decay Energies** in β^-, β^+, α and p decays

• far from stability - α and p (heavy or protonrich nuclei) & Q₆-neutron-rich nuclei

Implications for ENSDF

A-chain (β -decay chain) vs α -decay chain

										¹⁹⁵ Rn	¹⁹⁶ Rn	¹⁹⁷ Rn	198Rn	¹⁹⁹ Rn	²⁰⁰ Rn	²⁰¹ Rn	²⁰² Rn	²⁰³ Rn	²⁰⁴ Rn	²⁰⁵ Rn	²⁰⁶ Rn	²⁰⁷ Rn	208Rn	²⁰⁹ Rn	²¹⁰ Rn	²¹¹ Rn	²¹² Rn	21.
									¹⁹³ At	¹⁹⁴ At	¹⁹⁸ At	¹⁹⁶ At	¹⁹⁷ At	¹⁹⁸ At	¹⁹⁹ At	200 _{At}	²⁰¹ At	²⁰² At	²⁰³ At	²⁰⁴ At	²⁰⁵ At	206 _{At}	²⁰⁷ At	²⁰⁸ At	²⁰⁹ At	²¹⁰ At	²¹¹ At	²¹² At
					¹⁸⁸ Po	¹⁸⁹ Po	¹⁹⁰ Po	¹⁹¹ Po	192 _{Po}	¹⁹³ Po	194 Po	¹⁹⁵ Po	¹⁹⁶ Po	¹⁹⁷ Po	¹⁹⁸ Po	¹⁹⁹ Po	²⁰⁰ Po	²⁰¹ Po	202 _{Po}	²⁰³ Po	²⁰⁴ Po	²⁰⁵ Po	²⁰⁶ Po	²⁰⁷ Po	²⁰⁸ Po	²⁰⁹ Po	²¹⁰ Po	²¹¹ Po
		¹⁸⁴ Bi	¹⁸⁵ Bi	¹⁸⁶ Bi	¹⁸⁷ Bi	¹⁸⁸ Bi	¹⁸⁹ Bi	¹⁹⁰ Bi	¹⁹¹ 8i	¹⁹² Bi	¹⁹³ Bi	¹⁹⁴ Bi	¹⁹⁵ Bi	¹⁹⁶ Bi	¹⁹⁷ Bi	¹⁹⁸ Bi	¹⁹⁹ Bi	²⁰⁰ Bi	²⁰¹ Bi	²⁰² Bi	²⁰³ Bi	²⁰⁴ Bi	²⁰⁵ Bi	²⁰⁶ Bi	²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi	210 _{Bi}
¹⁸¹ Pb	¹⁸² Pb	¹⁸³ Pb	¹⁸⁴ Pb	¹⁸⁵ Pb	¹⁸⁶ Pb	¹⁸⁷ Pb	¹⁸⁸ Pb	¹⁸⁹ Pb	190 b	¹⁹¹ Pb	¹⁹² Pb	¹⁹³ Pb	¹⁹⁴ Pb	¹⁹⁵ Pb	¹⁹⁶ Pb	¹⁹⁷ Pb	¹⁹⁸ Pb	¹⁹⁹ Pb	200 _{Pb}	²⁰¹ Pb	202 _{Pb}	²⁰³ Pb	²⁰⁴ Pb	²⁰⁵ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb
¹⁸⁰ TI	¹⁸¹ TI	¹⁸² TI	¹⁸³ TI	¹⁸⁴ TI	¹⁸⁵ TI	¹⁸⁶ TI	³⁷ TI	¹⁸⁸ TI	¹⁸⁹ TI	¹⁹⁰ TI	¹⁹¹ TI	¹⁹² TI	¹⁹³ TI	¹⁹⁴ TI	¹⁹⁵ TI	¹⁹⁶ TI	¹⁹⁷ TI	¹⁹⁸ TI	¹⁹⁹ TI	²⁰⁰ TI	²⁰¹ TI	²⁰² TI	²⁰³ TI	²⁰⁴ TI	²⁰⁵ TI	²⁰⁶ TI	²⁰⁷ TI	208 _{TI}
¹⁷⁹ Hg	¹⁸⁰ Hg	¹⁸¹ H9	¹⁸² Hg	¹⁸³ Hg	¹⁸⁴ Hg	¹⁸⁵ Hg	инд	¹⁸⁷ Hg	¹⁸⁸ Hg	¹⁸⁹ Hg	¹⁹⁰ Hg	¹⁹¹ Hg	¹⁹² Hg	¹⁹³ Hg	¹⁹⁴ Hg	¹⁹⁵ Hg	¹⁹⁶ Hg	¹⁹⁷ Hg	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg	²⁰⁷ Hg
¹⁷⁸ Au	¹⁷⁹ Au	¹⁸⁰ Au	¹⁸¹ Au	10-2-1	¹⁸³ Au	¹⁸⁴ Au	¹⁸⁵ Au	¹⁸⁶ Au	¹⁸⁷ Au	¹⁸⁸ Au	¹⁸⁹ Au	¹⁹⁰ Au	¹⁹¹ Au	¹⁹² Au	¹⁹³ Au	¹⁹⁴ Au	¹⁹⁵ Au	¹⁹⁶ Au	¹⁹⁷ Au	¹⁹⁸ Au	¹⁹⁹ Au	200 _{AU}	²⁰¹ Au	²⁰² Au	²⁰³ Au	²⁰⁴ Au	205 _{AU}	
177 _{Pt}	¹⁷⁸ Pt	179 _{Pt}	¹⁸⁰ Pt	¹⁸¹ Pt	¹⁸² Pt	¹⁸³ Pt	¹⁸⁴ Pt	¹⁸⁵ Pt	¹⁸⁶ Pt	¹⁸⁷ Pt	¹⁸⁸ Pt	¹⁸⁹ Pt	¹⁹⁰ Pt	¹⁹¹ Pt	¹⁹² Pt	¹⁹³ Pt	¹⁹⁴ Pt	¹⁹⁵ Pt	¹⁹⁶ Pt	¹⁹⁷ Pt	¹⁹⁸ Pt	¹⁹⁹ Pt	²⁰⁰ Pt	²⁰¹ Pt	²⁰² Pt			
176 _{lr}	177 _{ir}	178 _{ir}	179 _{ir}	180 _{lr}	¹⁸¹ ir	182 _{1r}	183 <mark>)</mark> r	184 i r	185 _{ir}	186 _{ir}	187 _{ir}	188 _{ir}	189 _{lr}	190 _{lr}	¹⁹¹ ir	¹⁹² lr	193 _{ir}	194 _{lr}	195 _{lr}	196 _{lr}	197 _{ir}	¹⁹⁸ lr	¹⁹⁹ ir					
¹⁷⁵ Os	176 _{OS}	¹⁷⁷ Os	¹⁷⁸ Os	179 _{OS}	¹⁸⁰ Os	¹⁸¹ Os	¹⁸² Os	¹⁸³ Os	10-0-	¹⁸⁵ Os	¹⁸⁶ Os	¹⁸⁷ Os	¹⁸⁸ Os	¹⁸⁹ Os	¹⁹⁰ Os	¹⁹¹ Os	¹⁹² Os	¹⁹³ Os	¹⁹⁴ Os	¹⁹⁵ Os	¹⁹⁶ Os							
¹⁷⁴ Re	¹⁷⁵ Re	¹⁷⁶ Re	¹⁷⁷ Re	¹⁷⁸ Re	¹⁷⁹ Re	¹⁸⁰ Re	¹⁸¹ Re	¹⁸² Re	¹⁸³ Re	¹⁸⁴ Re	¹⁹⁵ Re	¹⁸⁶ Re	¹⁸⁷ Re	¹⁸⁸ Re	¹⁸⁹ Re	¹⁹⁰ Re	¹⁹¹ Re	¹⁹² Re	¹⁹³ Re	¹⁹⁴ Re								
173 _W	¹⁷⁴ W	¹⁷⁵ W	¹⁷⁶ W	177W	178 _W	¹⁷⁹ W	¹⁸⁰ W	¹⁸¹ W	¹⁸² W	¹⁸³ W	¹⁸⁴ W	185W	186W	¹⁸⁷ W	¹⁸⁸ W	¹⁸⁹ W	¹⁹⁰ W	¹⁹¹ W										
¹⁷² Ta	¹⁷³ Ta	¹⁷⁴ Ta	¹⁷⁵ Ta	¹⁷⁶ Ta	¹⁷⁷ Ta	¹⁷⁸ Ta	¹⁷⁹ Ta	¹⁸⁰ Ta	¹⁸¹ Ta	¹⁸² Ta	¹⁸³ Ta	¹⁸⁴ Ta	¹⁸⁵ Ta	180 .	¹⁸⁷ Ta	¹⁸⁸ Ta	¹⁸⁹ Ta	¹⁹⁰ Ta										
171Hf	¹⁷² Hf	¹⁷³ Hf	¹⁷⁴ Hf	¹⁷⁵ Hf	¹⁷⁶ Hf	177 _{Hf}	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸¹ Hf	182 _{Hf}	¹⁸³ Hf	¹⁸⁴ Hf	¹⁸⁵ Hf	¹⁸⁶ Hf		¹⁸⁸ Hf											

A=179 decay chain

- up-to-date data on basic NP properties for ground states and isomers (T_{1/2}>100 ns)
 - m, E_x, T_{1/2}, J^π, BR
- resolve isomers
 - excitation energies
 - ordering- e.g. ¹⁵⁵Tm
- consistent $J\pi$ assignments
 - shape changes
- update Q values in ENSDF (Adopted Levels) - for all A chains - simultaneously
 develop tools to easily
- follow & modify α-decaying chains

known mass of the reference nuclide (molecule)

in AME we compile the frequency ratios and use the latest data (both AME & atomic) for the reference nuclide in order to determine the mass of the nuclide of interest
in case of multiple data - use the least-squares approach

Visit the first AME paper where the individual results are compiled

(I). Evaluation of input data; and adjustment procedures

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd ^{160,162}Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N = 98

D. J. Hartley,¹ F. G. Kondev,² R. Orford,^{2,3} J. A. Clark,^{2,4} G. Savard,^{2,5} A. D. Ayangeakaa,^{2,*} S. Bottoni,^{2,†} F. Buchinger,³ M. T. Burkey,^{2,5} M. P. Carpenter,² P. Copp,^{2,6} D. A. Gorelov,^{2,4} K. Hicks,¹ C. R. Hoffman,² C. Hu,⁷ R. V. F. Janssens,^{2,‡} J. W. Klimes,² T. Lauritsen,² J. Sethi,^{2,8} D. Seweryniak,² K. S. Sharma,⁹ H. Zhang,⁷ S. Zhu,² and Y. Zhu⁷

¹⁶⁰ Tb 95	¹⁶¹ ₆₅ Tb ₉₆	¹⁶² 65 Tb 97	¹⁶³ Tb 98	¹⁶⁴ Tb 99	¹⁶⁵ ₆₅ Tb 100	65 Tb 101
72.3 d 3- Δ=-67835.5 (1.8) β-=100%	6.89 d 3/2+ Δ=-67460.8 (1.8) β-=100%	7.60 m (1-) Δ=-65670 (40) β-=100%	19.5 m 3/2+ ∆=-64595 (4) β-=100%	3.0 m (5+) Δ=-62080 (100) β-=100%	2.11 m 3/2+# Δ=-60570# (200#) β-=100%	25.1 s (2-) Δ=-57880 (70) β-=100%
¹⁵⁹ Gd 95	¹⁶⁰ Gd 96	¹⁶¹ Gd ₉₇	¹⁶² Gd ₉₈	¹⁶³ 64 Gd 99	¹⁶⁴ Gd 100	¹⁶⁵ 64 Gd 101
18.479 h 3/2- ∆=-68560.8 (1.6) β-=100%	Stable >3 €) 0+ Δ=-67940.9 (1.) Abndnc=21.86% (19) 2β- ?	3.646 m 5/2- Δ=-65505.0 (2.0) β-=100%	8.4 m Δ=-64280 β-=100-	68 s 7/2+# ∆=-61314 (8) β-=100%	45 s 0+ Δ=-59770# (200#) β-=100%	10.3 s 1/2-# Δ=-56490# (300#) β-=100%
¹⁵⁸ Eu ₉₅	¹⁵⁹ Eu ₉₆	¹⁶⁰ Eu ₉₇	¹⁶¹ Eu ₉₈	¹⁶² Eu ₉₉	¹⁶³ Eu 100	¹⁶⁴ Eu 101
45.9 m (1-) Δ=-67255 (10) β-=100%	18.1 m 5/2+ ∆=-66043 (4) β-=100%	38 s (1)(-#) Δ=-63480 (10) β-=100%	26 s 5/2+# Δ=−61792 (10) β−=100%	10.6 s Δ=-58690 (60) β-=100%	7.7 s 5/2+# Δ=-56640 (70) β-=100%	4.2 s Δ=-53330# (210#) β-=100%

CPT: mass measurements

R = m/Δm ~ 20,000,000

phase-imaging ion-cyclotron-resonance (PI-ICR) technique

- faster measurements nuclei with shorter lifetimes
- improved sensitivity & accuracy resolving isomers

PHYSICAL REVIEW LETTERS 120, 262701 (2018)

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for *r*-Process Calculations

M. Vilen,^{1,*} J. M. Kelly,^{2,†} A. Kankainen,¹ M. Brodeur,² A. Aprahamian,² L. Canete,¹ T. Eronen,¹ A. Jokinen,¹

T. Kuta,² I. D. Moore,¹ M. R. Mumpower,^{2,3} D. A. Nesterenko,¹ H. Penttilä,¹ I. Pohjalainen,¹

W. S. Porter,² S. Rinta-Antila,¹ R. Surman,² A. Voss,¹ and J. Äystö¹

Isotope	Reference	$ME_{REF}(keV)$	$r = u_{c,ref} / u_c$	ME_{JYFL} (keV)	$ME_{AME16}(\text{keV})$	$\Delta M E_{JYFL-AME16}$ (k
¹⁵⁶ Nd	¹³⁶ Xe	-86429.159(7)	$1.147 \ 366 \ 924(19)$	-60210(2)	-60470(200)	260(200)
¹⁵⁸ Nd	¹³⁶ Xe	-86429.159(7)	$1.162\ 132\ 772(290)$	-53897(37)	-54060(200)#	160(200)#
158 pm	¹⁵⁸ Gd	-70689 5(12)	1 000 078 752(9)	-59104(2)	-59089(13)	-15(13)
¹⁶⁰ Pm	¹³⁶ Xe	-86429.159(7)	$1.176\ 857\ 014(130)$	-52851(16)	-53000(200)#	149(201)#
¹⁰² Sm	¹³⁰ Xe	-86429.159(7)	$1.191\ 560\ 914(39)$	-54381(5)	-54530(200)#	149(200) #
¹⁶² Eu	¹³⁶ Xe	-86429.159(7)	$1.191\ 527\ 132(28)$	-58658(4)	-58700(40)	42(40)
Eu	Dy	-00381.2(8)	1.000 065 633(23)	-50420(4)	-50480(70)	60(70)
163 Gd	¹⁶³ Dy	-66381.2(8)	$1.000\ 034\ 135(22)$	$-61200(4)^{a}$	-61314(8)	114(9)
¹⁶⁴ Gd	¹⁷¹ Yb	-59306.810(13)	$0.959\ 046\ 522(14)$	-59694(3)	-59770(100)#	76(100)#
¹⁶⁵ Gd	¹⁷¹ Yb	-59306.810(13)	1.058 489 243(23) ^b	-56522(4)	-56450(120)#	-72(120)#
166 Gd	136 XC	-80429.159(7)	1.220 992 020(29)	-54307(4)	-54530(200)#	143(200)#
¹⁶⁴ Tb	¹⁷¹ Yb	-59306.810(13)	0.959 031 473(21)	-62090(4)	-62080(100)	-10(100)

TOF-ICR

15.0 (5) s from β-γ (time) D.J. Hartley et al., PRL120 (2018)

Masses of the very Heavy Nuclei

- experimental masses for 1/4 of the Chart of Nuclei rely on α-decay data measured by means of magnetic spectrographs or/and Si detectors
- most of these measurements are relative to standard values that may change over time - standards: values recommended by A. Rytz (1973,1979 & 1991) that are adopted by the AME collaboration
- recently, direct measurements using Penning Traps (high resolution & high precision) & MR-TOF (fast, but low precision) are performed provide new anchor points in the region of very heavy nuclei

PHYSICAL REVIEW C 89, 064318 (2014)

Direct high-precision mass measurements on ^{241,243}Am, ²⁴⁴Pu, and ²⁴⁹Cf

M. Eibach,^{1,2,*} T. Beyer,¹ K. Blaum,¹ M. Block,³ Ch. E. Düllmann,^{3,4,5} K. Eberhardt,^{2,5} J. Grund,⁴ Sz. Nagy,¹ H. Nitsche,^{6,7} W. Nörtershäuser,^{2,3,8} D. Renisch,² K. P. Rykaczewski,⁹ F. Schneider,^{2,10} C. Smorra,^{1,†} J. Vieten,¹¹ M. Wang,^{1,12,13} and K. Wendt¹⁰

TRIGA-TRAP@Mainz: measured masses of ^{241,243}Am, ²⁴⁴Pu & ²⁴⁹Cf

$$ME_{TT}(^{249}Cf) - ME_{TT}(^{241}Am) = Q_{\alpha}(^{249}Cf) + Q_{\alpha}(^{245}Cm) + Q_{\beta}(^{241}Pu) + 2 \times m_{\alpha}$$

possible source of discrepancy - α -decay energies of ²⁴⁵Cm and ²⁴⁹Cf?

²⁴⁹Cf-²⁴¹Am mass anomaly - cont.

What might went wrong?

- Q_β value for ²⁴¹Pu 4 independent & consistent (within 1 keV) values Q_β(AME16)=20.78(17) keV, BUT Q_β=18.2(27) keV from ME(²⁴¹Am), ME(²³⁷U) and Qα(²⁴¹Pu) ΔM(TT)- ΔM(ANL)=5.3(33) keV, e.g. less than 2σ
- TRIGA TRAP data for ²⁴⁹Cf unlikely? good consistency (within 1 keV) for ^{241,243}Am and ²⁴⁴Pu, BUT need to be confirmed?
- issues with the Rytz recommended (absolute) Eα values - this could have a huge impact since we must reconsider all α-decay energies in the Nuclear Chart?

Outlook

- (short term) new measurement program at ANL (CPT group) to directly test Ritz absolute Eα using a ²²⁸Th source - a chain of α emitters, e.g. ²²⁸Th, ²²⁴Ra, ²²⁰Rn, ²¹⁶Po (G. Savard's group at ANL)
- (long term) continuation of the Ritz evaluation work is urgently needed incorporation of the new measurements using Si detectors (PIPS & DSSD), Penning Traps & MR-TOF - area of interest to ANL ND & collaborations are welcome

Nuclear Inst. and Methods in Physics Research, A 940 (2019) 56-60

High-precision α -particle energies in the decay of Es, Fm, and Md Isotopes

I. Ahmad, F.G. Kondev*

Nuclear Archeology

Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA

Table 2

Alpha-particle energies determined in the present work. Published values were corrected for new α energies of the standards.

Nuclide	Half-life	Previously published		Present work			
Alpha group	[14]	Standard used	E_{α} (keV)	Standard used	E_{α} (keV)		
251 Es α_0	33 h	column 2 (Table 1)	6492 ± 2 [15]	7040.0 ± 1.0	6491.8 ± 1.0		
²⁵² Es a ₀	471.7 d	6632 (²⁵³ Es)	6631 ± 3 [16]	6118.10 ± 0.04	6631.5 ± 0.5		
a ₅₉₀		6111 (²⁴² Cm)	6050 ± 3 [16]	6118.10 ± 0.04	6050.8 ± 0.5		
²⁵⁴ Es a ₈₄	275.7 d	column 2 (Table 1)	6429 ± 2 [9]	6632.51 ± 0.05	6430.5 ± 0.5		
				6118.10 ± 0.04			
^{254m} Es α ₂₁₂	39.3 h	column 2 (Table 1)	6382 ± 2 [9]	6632.51 ± 0.05	6383.5 ± 1.0		
251 Fm α_0	5.30 h	column 2 (Table 1)	7305 ± 3 [15]	7040.0 ± 1.0	7306.0 ± 1.0		
α_{480}		column 2 (Table 1)	6833 ± 2 [15]	7040.0 ± 1.0	6833.4 ± 1.0		
252 Fm α_0	25.39 h	column 3 (Table 1)	7039 ± 2 [17]	6632.51 ± 0.05	7040.0 ± 1.0		
253 Fm α_0	3.0 d	6640 (²⁵³ Es)	7092 ± 4 [18]	6632.51 ± 0.05	7083.9 ± 1.0		
α_{417}		6640 (²⁵³ Es)	6682 ± 3 [18]	6632.51 ± 0.05	6673.7 ± 1.0		
254 Fm α_0	3.240 h	column 3 (Table 1)	7192 ± 2 [17]	6632.51 ± 0.05	7192.0 ± 1.0		
255 Fm α_0	20.07 h	column 3 (Table 1)	7127 ± 2 [10]	6632.51 ± 0.05	7126.8 ± 0.5		
α ₁₀₆		column 3 (Table 1)	7022 ± 2 [10]	6632.51 ± 0.05	7022.0 ± 0.5		
a ₅₄₄		column 3 (Table 1)	6592 ± 2 [10]	6632.51 ± 0.05	6591.3 ± 0.5		
256 Fm α_0	157.6 min	7022 (²⁵⁵ Fm)	6915 ± 4 [19]	7022.0 ± 0.5	6915.0 ± 2.0		
257 Fm α_{241}	100.5 d	6632 (²⁵³ Es)	6520 ± 2 [20]	6632.51 ± 0.05	6519.7 ± 1.0		
²⁵⁵ Md α ₄₆₁	27 min	7022 (²⁵⁵ Fm)	7327 ± 4 [19]	7022.0 ± 0.5	7327.0 ± 2.0		
$^{256}Md \alpha_{excited}$	77 min	7022 (²⁵⁵ Fm)	7206 ± 4 [19]	7022.0 ± 0.5	7207.0 ± 2.0		
²⁵⁷ Md <i>a</i> ₃₇₁	5.52 h	6911 (²⁵⁶ Fm)	7064 ± 5 [21]	6915.0 ± 2.0	7069.0 ± 3.0		
$^{258}Md \alpha_{excited}$	51.5 d	6632 (²⁵³ Es)	6716 ± 5 [21]	6632.51 ± 0.05	6717.0 ± 2.0		

