Texas A&M Evaluation Center Strategic Priorities

- Continuing ENSDF Mass Chain Evaluation (1 FTE)
 - First Strategic Priority according to the Mission Statement. All other priorities will be strictly subordinated to this purpose
- Produce experimental nuclear data to aid data evaluation
 - Precision Internal Conversion Coefficients Measurements at Cyclotron Institute, Texas A&M University to give USDNP the best approach for ENSDF ICC-calculated values (concluding cases pending on conditions)
- Experimental studies of Medical Isotopes
 - Invers kinematics methodology, Cyclotron Institute, Texas A&M University
- Reevaluation of data procedures for basic science and data evaluation Level scheme re-concept based on Repeatability, a newly revealed experimental data evidence

Texas A&M Evaluation Center Expanded Involvement in Applied Measurements of Precision Internal Conversion Coefficients

Theme: Precision Measurements for USNDP

 Texas A&M Center implied decisively by decade-long program of Internal Conversion Coefficient (ICC) Precision Measurements to guide USNDP for best approach of theoretical ENSDF database ICC values

						Calculated α_{K} values:		
	Pare	ent		Transition	Measured	No	"Frozen	SCF
	Stat	е	Multipolarity	Energy (keV)	α_{K}	vacancy	Orbitals"	
	93m	b	M4	30.760(5)	25600(900)	23960	25990	25440
:	103m	Rh	E3	39.752(6)	141.1(23)	131.3	139.4	137.2
:	, 111m	Cd	E3	150.825(15)	1.449(18)	1.425	1.451	1.446
	119m	Sn	M4	65.660(10)	1621(25)	1544	1618	1603
:	125m	Те	M4	109.276(15)	185.0(40)	179.5	185.2	184.2
(, 127m	Те	M4	88.23(7)	484(6)	468.6	486.4	483.1
	, 134m	Cs	E3	127.502(3)	2.742(15)	2.677	2.741	2.73
	137m	Ba	M4	661.659(3)	0.0915(5)	0.09068	0.0915	0.091
9	, 193m	lr	M4	80.22(2)	103.0(8)	92.0	103.3	99.7
	197m ا	Pt	M4	346.5(2)	4.23(7)	4.191	4.276	4.265
					χ ² :	252	1.5	21.5

Texas A&M Evaluation Center Expanded Involvement in Applied Measurements for Medical Isotopes Production by Inverse Kinematics

Theme: Research for Medical Isotopes Production by Inverse Kinematics

- Innovative method for the production of important medical radioisotopes based on the nuclear reaction in inverse kinematics, by:
 - Directing a heavy ion beam of appropriate energy on a light target (e.g., H, d, He) and
 - Collecting the isotope of interest on an appropriate catcher after the target.

• **Case Studies** (at this stage beyond the proof-of-principle):

- ⁶⁷Cu (T_{1/2} = 62 h) via the reaction of ⁷⁰Zn beam of 15 MeV/nucleon with a cryogenic hydrogen gas target
- ⁹⁹Mo (T_{1/2} = 66 h) via the reaction of ¹⁰⁰Mo of 12 MeV/nucleon with a cryogenic ⁴He cryogenic gas target
- Secondary neutrons from the primary reaction were used to irradiate a secondary target for further radioisotope production (to be further developed)
- At K500 Cyclotron & MARS spectrometer of Texas A&M Cyclotron Institute

- Radioactive isotopes identified by γ -ray spectroscopy:
 - (a) ⁶⁷Cu run
 - (b) ⁹⁹Mo run

Texas A&M Evaluation Center New Initiatives & Directions

Theme: Data Evaluation for Basic Physics

 Reevaluation of data procedures for basic science and data evaluation Level scheme re-concept based on Repeatability, a newly revealed experimental evidence

Texas A&M Evaluation Center Precision Internal Conversion Coefficients Measurements Follow-up

Theme: Precision Measurements for USNDP

 Texas A&M Center implied decisively by decade-long program of Internal Conversion Coefficient (ICC) Precision Measurements to guide USNDP for best approach of theoretical ENSDF database ICC values

					Calculated α_{K} values:			
	Parent		Transition	Measured	No	"Frozen	SCF	
	State	Multipolarity	Energy (keV)	α_{K}	vacancy	Orbitals"		
1	^{93m} Nb	M4	30.760(5)	25600(900)	23960	25990	25440	
2	^{103m} Rh	E3	39.752(6)	141.1(23)	131.3	139.4	137.2	
3	^{111m} Cd	E3	150.825(15)	1.449(18)	1.425	1.451	1.446	
4	^{119m} Sn	M4	65.660(10)	1621(25)	1544	1618	1603	
5	^{125m} Te	M4	109.276(15)	185.0(40)	179.5	185.2	184.2	
6	^{127m} Te	M4	88.23(7)	484(6)	468.6	486.4	483.1	
7	^{134m} Cs	E3	127.502(3)	2.742(15)	2.677	2.741	2.73	
8	^{137m} Ba	M4	661.659(3)	0.0915(5)	0.09068	0.0915	0.091	
9	^{193m} r	M4	80.22(2)	103.0(8)	92.0	103.3	99.7	
10	^{197m} Pt	M4	346.5(2)	4.23(7)	4.191	4.276	4.265	
					252	1 5	21 5	

Texas A&M Evaluation Center Precision Internal Conversion Coefficients Measurements Follow-up

- Covered the interval 93<A<197 of nuclear chart and concluded that the "frozen orbitals" hole calculations are best describing the results.
- However the calculation methodology is an approximate description of reality with no obvious reason, other than the empirical evidence, that it is universally valid.
- *Game changer:* the last studied case, ^{93m}Nb, was done with a Si(Li) detector that was painstakingly efficiency calibrated and it is now fit to explore for ICC measurements in the underrepresented region A<100.
- There are but two measurements close to A~200 limit and one can use the HPGe detector for more measurements in this region (and higher)
 - Conclusion: it is still possible to improve the ICC test by

extending the A range

- Possible candidates: ^{58m}Co, ^{198m}Au

,38*m*

 $27^{58m}Co, \Delta_{K}=4.7\%, \alpha_{K}(exp)=1860(100) (ENSDF), \%unc=5.4\%; 2030(90) (2002RA45)$

24.9-keV M4, single IT γ , T_{1/2}=9.1 h, $\alpha_{K}(FO)=1840$, $\alpha_{K}(NH)=1754$ ⁵⁸Co g.s. ϵ , T_{1/2}=70.9 d, ($\lambda \times I_{Kx}$)(g.s./m.s.)= 0.51(3)% *ONLY Si(Li) detector*

ENSDF list of reactions:

a) There are many reactions used for *prompt* studies: With γ measured: $(\alpha,n\gamma)$, (p,γ) , $(p,n\gamma)$, $(n,2n\gamma)$, $(d,n\gamma)$; Only particles: (p,n), (p,d), (d,t), (d,n), (d,α) , $(^{3}\text{He},d)$, (α,d) that generally did not observed the 24.9 γ , nor give relevant cross sections.

b) Most promising ⁵⁸Co IT decay dataset were considered:

- 1. $\frac{58Ni(n,p)}{58Co}$ in n flux $\Phi = 10^{14}$ n/cm²s (1971Pl02)
- "spectroscopically pure" NiO activated for 24 h;
- ^{58m}Co was separated from NiO with anion-resin (Dowex-2, X-10, 200-400 mesh);
- Ni was washed out with 7N HCl solution => separation factor $\sim 10^5$
- The elude was dried and dissolved in aqua destillata from which it was electroplated on Pt foil
- 99.9% enriched (from 68%) ⁵⁸Ni (metal, oxide) is available from Isoflex, Trace

Texas A&M Nuclear Science Center reactor activation estimation

- NSC fast neutron: Φ (integrated) ~ 5.1x10¹⁰ n/cm²s (...)
- EXFOR V0002009: σ_{aver}(n,p,E_n)=1.1-14 MeV=478 mb (should be divided in between m.s. and g.s...)
- 2 mg of ⁵⁸Ni activated for 1 h give about 1 µCi of ⁵⁸Co

 $79^{198m}Au$

ENSDF list of reactions to populate the IT state:

 $^{200}Hg(d,\alpha)~(1972Cu06),~^{197}Au(d,p)~(1968Bo30,1973Pa08),~^{198}Hg(n,p)~(1973Pa08),~^{100}H$

 $^{196}Pt(\alpha,pn)(1975Ma30),^{198}Pt(d,2n) (1975Ma30),$

¹⁹⁷Au(n, γ) (1990Pi08).