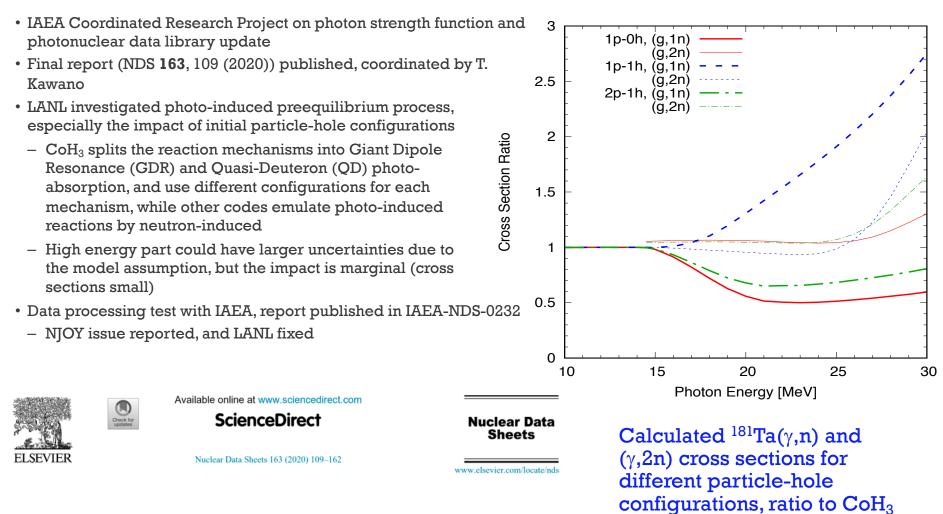
LANL report for US Nuclear Data Program in FY20

H.Y. Lee and T. Kawano

LANL

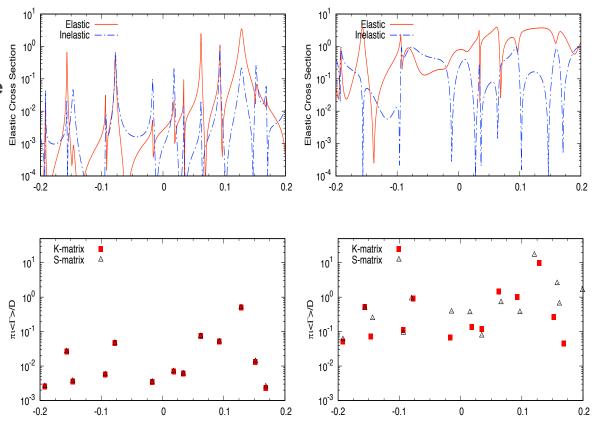

Staffing changes:

1. Sean Kuvin, converted to be a new staff in P-27 group

IAEA Photonuclear Data Library 2019

IAEA Photonuclear Data Library 2019

T. Kawano,^{1, *} Y. S. Cho,² P. Dimitriou,³ D. Filipescu,⁴ N. Iwamoto,⁵ V. Plujko,⁶ X. Tao,⁷ H. Utsunomiya,⁸

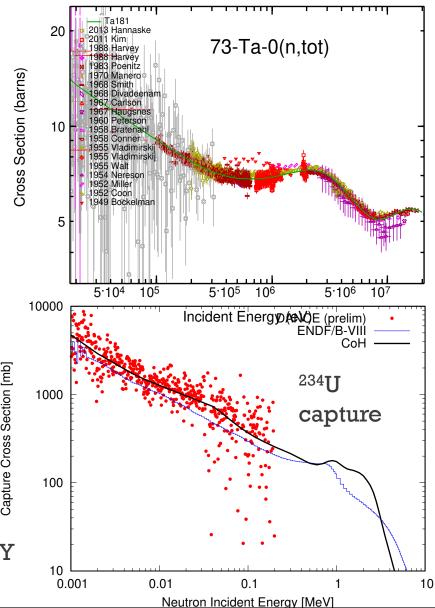

V. Varlamov,⁹ R. Xu,⁷ R. Capote,³ I. Gheorghe,⁴ O. Gorbachenko,⁶ Y.L. Jin,⁷ T. Renstrøm,¹⁰

M. Sin,¹¹ K. Stopani,⁹ Y. Tian,⁷ G.M. Tveten,¹⁰ J.M. Wang,⁷ T. Belgya,¹² R. Firestone,¹³

S. Goriely,¹⁴ J. Kopecky,¹⁵ M. Krtička,¹⁶ R. Schwengner,¹⁷ S. Siem,¹⁰ and M. Wiedeking¹⁸

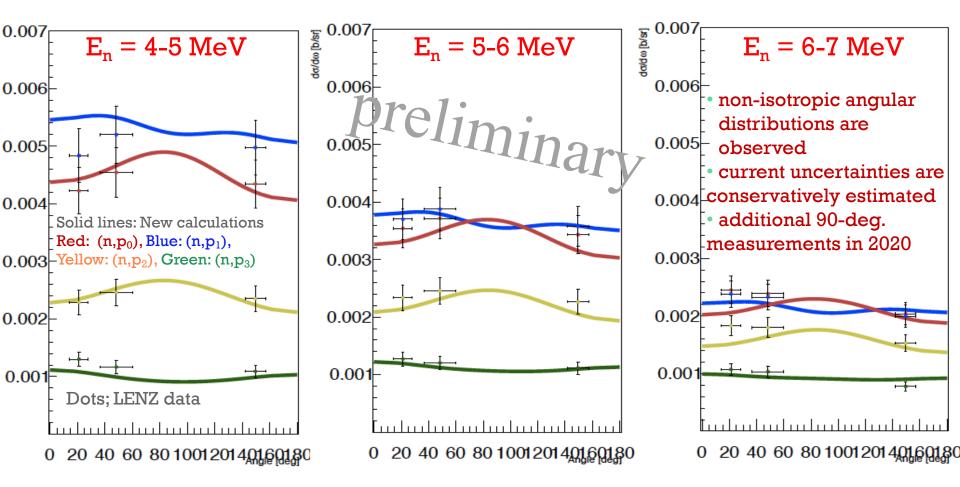
GOE Statistical Theory Development

- Relation between the average decay width <Γ> and compound reaction cross section studied in terms of the S and K-matrices representation
- Widths by S and K-matrices agree when absorption is weak
- They differ in the strong absorption regime
- Statistical model expressed by the transmission coefficient always give the correct average cross section, while expression by <Γ> is ambiguous



Weak absorption

Strong absorption


Evaluation of ¹⁸¹Ta, ^{234,236}U, and FPY

- On-going new evaluations
- ¹⁸¹Ta, reported by M. Herman
 - Interesting deformed nucleus, work ongoing
 - Paper on unified Coupled-Channels Hauser-Feshbach model will be published (EPJA)
- -^{234,236}U, reported by I. Stetcu
 - Submitted to NNDC
 - SOK code for fission evaluation
 - New KALMAN code applied for parameter optimization
- FPY evaluation
 - Funded by NNSA/NA22, but theoretical modeling aspect by USNDP
 - CoH₃/BeoH significantly utilized
 - PRC paper on energy dependence of FPY submitted (A. Lovell)

⁵⁴Fe(n,p) angular distributions (d σ /d Ω (b/sr) vs. θ_{lab} (deg))

Work by A. Georgiadou, prepared for Phys. Rev. C submission

New Angular distributions are performed by calculating Legendre coefficients explicitly with CoH by Kim, Kawano, et al. "New Evaluation on Angular Distributions and Energy Spectra for Neutron-induced Charged Particle Measurements", H. I. Kim, H. Y. Lee, T. Kawano, A. Georgiadou, S. A. Kuvin, L. Zavorka, and, M.W. Herman, Nucl. Instr. Meth. A 963, 163699 (2020)

³⁵Cl(n,p) cross section at fast-neutron energy

Our results suggest a full evaluation of this reaction including a new measurement below 1 MeV "Nonstatistical fluctuations in the ³⁵Cl(n,p)³⁵S reaction cross section at fast-neutron energies from 0.6 to 6 MeV", S. A. Kuvin, H. Y. Lee, T. Kawano, B. DiGiovine, A. Georgiadou, C. Vermeulen, M. White, L. Zavorka, and H. I. Kim, Phys. Rev. C 102, 024623 (2020)

En > 1 MeV with large energy binning En > 0.5 MeV with small energy binning ENDF/B-VIII.0 (n,p_) section (b n,tot ENDF/B-VIII.0 (a) ENDF/B-VIII.0 (n,p) 200 (n,p) This Work (n,p_) Smith 2015 [15] Cross section (mb) 001 3 (n,p_) Batchelder 2019 [12] ENDF/B-VIII.0 (n,p) Cross (n,p_) This Work ENDF/B-VIII.0 (n,p_) (n,p) This Work 10 50 section (mb) ----- ENDF/B-VIII.0 (n,p_) (b) (n,p) This Work ENDF8 (n,p_{tot}) ENDF/B-VIII.0 (n,p.) Cross section (mb) (n,p.) This Work ENDF/B-VIII.0 (n,p_) n,p (This Work) (n,p_) This Work Cross n,p_tot Batchelder 2019 [12] n,p_tot ENDF/B-VIII.0 10 n,p_tot Modified Kunieda (This Work) n,p_tot Bullock and Moore 1960 [36] Incident Neutron Energy (MeV) 10^{-2} 0.8 0.9 2 0.6 0.7 ENDF/B-VIII.0 overpredicts discrete cross sections, Incident Neutron Energy (MeV) however we explored the modified Kunieda potential which reproduced the measure cross

Comparing to Batchelder's data (red dots), we confirmed non-statistical behavior, which is in particular consistent with the transmission data (top panel) for neutron energy below 1 MeV.

sections reasonably well

Diamond data- validation of^{12,13}**C(n,x) reactions**

0.35 target at neutron energies from 0.4 to 22 MeV at LANSCE", S.A. Kuvin, H.Y. $^{12}C(n,\alpha_0)^9Be_{\alpha s}$ 0.3 ENDF-BVIII.0 ¹²C(n,el/n') NDL-4.0 3000 0.25 Without completely Cross section (barn) n Der Zwan-1970 7.22 < E_n < 7.29 MeV etze-1982 disentanglement of 0.2 iaht-1985 elastic channels from 2500 Schmidt-1992 —— Experiment 0.15 inelastic channels, a Pillon [][] Sim with ENDF-B/VIII.0 This Work pulse height spectrum 2000 0. Sim with JENDL4.0 keV could validate different (n,el) ENDF-B/VIII.0 0.05 evaluations. Our data is 1500 ----- (n,n') ENDF-B/VIII.0 better reproduced when (n,el) JENDL4.0 12 14 Incident Neutron Energy (MeV) simulation used the ------ (n,n') JENDL4.0 1000 ENDF/B-VIII 0 0.03 This Work from Ref [] from Ref [] CoH calculaton [] n,p⁰) n,p⁰) evaluation for elastic 500 0.025 scattering and inelastic $^{12}C(n,p_0)$ scattering. 0.02 0.5 1.5 2 0.015 Detected Energy (MeV) 0.20 For the relevant 0.01 LANSCE data energy 0.18 range, the elastic and 0.005 $^{13}C(n,\alpha_0)^{10}Be_{qs}$ 0.16 inelastic Cross Section (barn) 0.14 scattering cross p) This Work p) from Ref [] p) from Ref [] CoH calculaton u $^{12}C(n, d_0 + p_1)$ 0.12 0.12 sections (Resler 1989 preliminary CoH calculaton 0.10 0.1 measurements at calculaton (parn) Ohio U.) are 0.08 0.08 compared with the 0.06 0.06 ¹³C(n, α_0) channel. 0.04 Presented similar 0.04 0.02 structures in both 0.02 0.00 reaction channels. 6.5 6.0 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 18 20 22 Incident Neutron Energy (MeV) E_{cm} (MeV)

"Validation of neutron induced reactions on natural carbon using an active Lee, B. DiGiovine, A. Georgiadou, and D. Votaw, Phys. Rev. C (in preparation)

Black dots: LANSCE data