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Introduction

* There are unstable resonance hadrons, with finite lifetime
- there is non-zero variation in the rest energy (mass).

* This can be quantified as the probability distribution,
or density of states within specific mass bin
- the spectral function (SF)

 Why do we care about SF and finite width in hybrid approach
for heavy ion collisions?
- It can alter hadronic chemistry as the variation in resonance
mass can change the multiplicity.
- It is also crucial in electromagnetic probes.
(e.g. dileptons and photons)




Framework
Spectral functions in SMASH

In SMASH, which is a microscopic transport of hadronic system,
J. Well et al. (2016)
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Framework
Spectral functions in SMASH

Thermodynamics with spectral functions

c = To fama ) [ &L foatam

P

spectral func.
pole masses

0.1

02 03 04 05

e (GeV / fm®)

spectral func.
6 pole masses
4
2
0

0.11 0.12 0.13 0.14 0.15 0.16 0.17
T (GeV)

o famaim [ G55 dostam

0.25

02 |
Now 0.15 |-

01

0.05

011012013014015016017

spectral func.
pole masses

/ »

T (GeV)




Framework
Spectral functions in SMASH

Thermodynamics with spectral functions
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f-h In the case of vanishihg chemical pOtenti'a‘Is','
{ difference introduced by SF is less than 5%.




Framework

Extension of the Cooper-Frye formalism Cooper and G. Frye (1972)

Beginning with the energy-stress tensor
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Framework

Extension of the Cooper-Frye formalism Cooper and G. Frye (1972)

Beginning with the energy-stress tensor
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Framework

Extension of the Cooper-Frye formalism Cooper and G. Frye (1972)

Viscous corrections to the distribution function

There are a few formalisms in the market.

 Grad’s expansion with 14-moments approximation

- Expansion in the power of momentum
D. Teaney (2003)

 Chapman-Enskog expansion with relaxation time approximation
- Expansion in the power of Knudsen number (Kn ~ ¢,V ,u")
P. Bozek (2010)

« Resummed viscous correction
- Exponentiate the distribution function
M. McNelis, D. Everett and U. Heinz 1912.08271
S. Pratt and G. Torrieri (2010)




Framework

Extension of the Cooper-Frye formalism Cooper and G. Frye (1972)

Bulk viscous correction to the distribution function

In the case of the (leading-order) Chapman-Enskog expansion
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Framework

Extension of the Cooper-Frye

Shear viscous correction to the

formalism F. Cooper and G. Frye (1972)
distribution function

Grad’s expansion with 14-moment approximation is used for the ¢ fshear

in the current MUSIC+SMASH hybri

d simulations.

TPt DY
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NOTE : All of the shear, bulk and diffusive corrections can be obtained

within each framework ment

lioned before.

TO DO : determine 0 fohears 0 foulk @nNd 0 faigusion from thermodynamic
integrals within a single and consistent framework.




Framework

Sampling Procedure

In each (discretized) hypersurface element
1. Determine the mean multiplicity of each hadronic specie
(N) = u“AgEu/dm Ai(m) [ngi(x,m) + dnpuik.i(x, m)]

2. In the case of resonance, sample the mass from
PDF(m) o< A;(m) [no.i(x,m) + dnpuik.i(z, m)]

3. Then sample momentum from

dV; HASY
3 X L g [fO,i(xa P, m) + 5fshear,i(x7 P, m) + 5fbulk,i($7 P, m)]
d°p E,
Go over all hypersurface elements.
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Results

Verification of mass sampling in a thermal box

Mass distribution is different from the spectral function itself,
due to the mass-dependent number density.
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Results

Energy/momentum conservation check in a box

For an arbitrary shear stress tensor
satisfying »%* = n¥¥ % /2,

Chapman-Enskog § f,c.r WOrks
better to yield the desired value
of =#%, for small =",

Resummed § ..., results in a slight
deviation in 7%%, but it Is not an
issue for typical size of 7# in

(/77 ~ 0.02 (e + P))

TO DO : conservation check
with bulk viscous correction
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Results

Single-particle distributions of resonances at particlization
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- There is up to ~30% change in the multiplicity of A .
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- Modification of the momentum space distribution is negligible.
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Results

Flow anisotropy of resonances at particlization
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- There is up to ~30% change in the multiplicity of A .
- Modification of the momentum space distribution is negligible.
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Results

Single-particle distributions of final-state hadrons
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- Spectral functions have small effect (~ 10% for proton),
In the case of ultra-relativistic heavy ion collisions.




Results

Flow anisotropy distributions of final-state hadrons
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- Spectral functions have quite small effect (< 5%),
In the case of ultra-relativistic heavy ion collisions.
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Conclusions

 Finite widths of resonances are taken into account

by having spectral functions at the Cooper-Frye particlization.

 Atthe up =0 regime, spectral functions do not change
the thermodynamics much. (less than 5% difference)

* |In the case of ultra-relativistic heavy ion collisions,
spectral functions also have small effects
on the final-state flow anisotropy of hadrons.

TO DO list

* Extend toward finite us, us, pc regime as it should be addressed
In low-energy heavy ion collisions.

* Consistently determine shear, bulk and diffusive corrections
to distribution function and corresponding transport coefficients.
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