

Annual Meeting

Cooper-Frye particlization with spectral functions

Sangwook Ryu

in collaboration with Chun Shen, Scott Pratt, Dmytro Oliinychenko and Rachel Steinhorst

Introduction

- There are unstable resonance hadrons, with finite lifetime - there is non-zero variation in the rest energy (mass).
- This can be quantified as the probability distribution, or density of states within specific mass bin
 the spectral function (SF)
- Why do we care about SF and finite width in hybrid approach for heavy ion collisions?
 - It can alter hadronic chemistry as the variation in resonance mass can change the multiplicity.
 - It is also crucial in electromagnetic probes. (e.g. dileptons and photons)

Spectral functions in SMASH

In SMASH, which is a microscopic transport of hadronic system, J. Weil *et al*. (2016)

Breit-Wigner SF
$$\mathcal{A}(m) = \frac{2}{\pi} \frac{m^2 \Gamma(m)}{(m^2 - m_{\text{pole}}^2)^2 + m^2 \Gamma^2(m)}$$

with mass-dependent width from D. M. Manley and E. M. Saleski (1992)

Spectral functions in SMASH

Thermodynamics with spectral functions

Spectral functions in SMASH

Thermodynamics with spectral functions

Extension of the Cooper-Frye formalism F. Cooper and G. Frye (1972)

Beginning with the energy-stress tensor

$$T^{\mu\nu} = \sum_{i} g_{i} \int dm \,\mathcal{A}_{i}(m) \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$
Spectral function
$$\frac{dN_{i}}{dm \, d^{3}\mathbf{p}} = \frac{g_{i}}{(2\pi)^{3}} \int_{\Sigma} d^{3}\Sigma_{\mu} \,\mathcal{A}_{i}(m) \frac{p^{\mu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$
Energy/momentum conservation
$$\mathcal{P}_{\text{tot}}^{\mu} = \sum_{i} \int dm \int d^{3}\mathbf{p} \, p^{\mu} \frac{dN_{i}}{dm \, d^{3}\mathbf{p}}$$

$$= \int_{\Sigma} d^{3}\Sigma_{\nu} \sum_{i} g_{i} \int dm \,\mathcal{A}_{i}(m) \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$

$$= \int_{\Sigma} d^{3}\Sigma_{\nu} T^{\mu\nu}$$

Extension of the Cooper-Frye formalism _F

F. Cooper and G. Frye (1972)

Beginning with the energy-stress tensor

$$T^{\mu\nu} = \sum_{i} g_{i} \int dm \,\mathcal{A}_{i}(m) \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$
Spectral function
$$\frac{dN_{i}}{dm \, d^{3}\mathbf{p}} = \frac{g_{i}}{(2\pi)^{3}} \int_{\Sigma} d^{3}\Sigma_{\mu} \,\mathcal{A}_{i}(m) \frac{p^{\mu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$
Mass distribution
$$\frac{dN_{i}}{dm} = \int d^{3}\mathbf{p} \frac{dN_{i}}{dm \, d^{3}\mathbf{p}}$$

$$= g_{i} \int_{\Sigma} d^{3}\Sigma_{\mu} \,\mathcal{A}_{i}(m) \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{p^{\mu}}{E_{\mathbf{p}}} f(x,\mathbf{p},m)$$

$$= \int_{\Sigma} d^{3}\Sigma_{\mu} \,j_{i}^{\mu}(x,m) \,\mathcal{A}_{i}(m) \rightarrow \int_{\Sigma} u^{\mu} d^{3}\Sigma_{\mu} \,n_{i}(x,m) \,\mathcal{A}_{i}(m)$$

Extension of the Cooper-Frye formalism F. Cooper and G. Frye (1972)

Viscous corrections to the distribution function

There are a few formalisms in the market.

- Grad's expansion with 14-moments approximation
 - Expansion in the power of momentum D. Teaney (2003)
- Chapman-Enskog expansion with relaxation time approximation
 - Expansion in the power of Knudsen number $({\rm Kn} \sim l_{\rm mfp} \nabla_{\mu} u^{\mu})$ P. Bozek (2010)
- Resummed viscous correction
 - Exponentiate the distribution function
 M. McNelis, D. Everett and U. Heinz 1912.08271
 S. Pratt and G. Torrieri (2010)

Extension of the Cooper-Frye formalism F. Cooper and G. Frye (1972)

Bulk viscous correction to the distribution function

In the case of the (leading-order) Chapman-Enskog expansion

$$\delta f_{\text{bulk}} = -\frac{\Pi}{\hat{\zeta}} f_0(1 \pm f_0) \frac{p^{\mu} p^{\nu}}{(p \cdot u)} \left(\frac{1}{3} \Delta_{\mu\nu} + c_s^2 \, u_{\mu} u_{\nu}\right)$$

Normalization :
$$-3 \Pi = g_{\mu\nu} \, \delta T^{\mu\nu}_{\text{bulk}}$$

$$= \sum_{i} g_{i} \int dm \, \mathcal{A}_{i}(m) \, m^{2} \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}E_{\mathbf{p}}} \, \delta f_{\text{bulk},i}(\mathbf{p})$$

$$\hat{\zeta} = \frac{1}{3} \sum_{i} g_{i} \int dm \, \mathcal{A}_{i}(m) \, m^{2} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}E_{\mathbf{k}}} \, f_{0,i}(1 \pm f_{0,i}) \left[\frac{m^{2}}{3E_{\mathbf{k}}} + \left(\frac{1}{3} - c_{s}^{2} \right) E_{\mathbf{k}} \right]$$

Viscous correction to the number density :

$$\delta n_{\text{bulk},i} = \frac{g_i}{2\pi^2} \frac{\Pi}{\hat{\zeta}} \sum_{l=1}^{\infty} (\pm 1)^{l+1} e^{l\mu/T} \times \int dm \,\mathcal{A}_i(m) \, m^2 T^2 \left[\left(\frac{1-3 \, c_s^2}{l} \right) K_2 \left(\frac{lm}{T} \right) - c_s^2 \frac{m}{T} K_1 \left(\frac{lm}{T} \right) \right]$$

8

Extension of the Cooper-Frye formalism F. Cooper and G. Frye (1972)

Shear viscous correction to the distribution function

Grad's expansion with 14-moment approximation is used for the $\delta f_{\rm shear}$ in the current MUSIC+SMASH hybrid simulations.

$$\delta f_{\text{shear}} = f_0 (1 \pm f_0) \frac{\pi_{\mu\nu} p^{\mu} p^{\nu}}{2 (\epsilon + P) T^2}$$

NOTE : All of the shear, bulk and diffusive corrections can be obtained within each framework mentioned before.

TO DO : determine $\delta f_{\rm shear}$, $\delta f_{\rm bulk}$ and $\delta f_{\rm diffusion}$ from thermodynamic integrals within a single and consistent framework.

Sampling Procedure

In each (discretized) hypersurface element

- 1. Determine the mean multiplicity of each hadronic specie $\langle N \rangle = u^{\mu} \Delta^{3} \Sigma_{\mu} \int dm \, \mathcal{A}_{i}(m) \, [n_{0,i}(x,m) + \delta n_{\mathrm{bulk},i}(x,m)]$
- 2. In the case of resonance, sample the mass from $PDF(m) \propto \mathcal{A}_i(m) [n_{0,i}(x,m) + \delta n_{\mathrm{bulk},i}(x,m)]$
- 3. Then sample momentum from

 $\frac{dN_i}{d^3\mathbf{p}} \propto \frac{p^{\mu}\Delta^3\Sigma_{\mu}}{E_{\mathbf{p}}} \left[f_{0,i}(x,\mathbf{p},m) + \delta f_{\mathrm{shear},i}(x,\mathbf{p},m) + \delta f_{\mathrm{bulk},i}(x,\mathbf{p},m) \right]$

Go over all hypersurface elements.

Verification of mass sampling in a thermal box

Mass distribution is different from the spectral function itself, due to the mass-dependent number density.

Energy/momentum conservation check in a box

For an arbitrary shear stress tensor satisfying $\pi^{xx} = \pi^{yy} = -\pi^{zz}/2$,

- Chapman-Enskog δf_{shear} works better to yield the desired value of π^{zz} , for small $\pi^{\mu\nu}$.
- Resummed δf_{shear} results in a slight deviation in π^{zz} , but it is not an issue for typical size of $\pi^{\mu\nu}$ in ultra-relativistic heavy ion collisions. $(\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}} \sim 0.02 (\epsilon + P))$
- TO DO : conservation check with bulk viscous correction

Calculation by Scott Pratt

Single-particle distributions of resonances at particlization

- There is up to ~30% change in the multiplicity of Δ .

- Modification of the momentum space distribution is negligible.

Flow anisotropy of resonances at particlization

- There is up to ~30% change in the multiplicity of Δ .

- Modification of the momentum space distribution is negligible.

Single-particle distributions of final-state hadrons

- Spectral functions have small effect (~ 10% for proton), in the case of ultra-relativistic heavy ion collisions.

Flow anisotropy distributions of final-state hadrons

- Spectral functions have quite small effect (< 5%), in the case of ultra-relativistic heavy ion collisions.

Conclusions

- Finite widths of resonances are taken into account by having spectral functions at the Cooper-Frye particlization.
- At the $\mu_B = 0$ regime, spectral functions do not change the thermodynamics much. (less than 5% difference)
- In the case of ultra-relativistic heavy ion collisions, spectral functions also have small effects on the final-state flow anisotropy of hadrons.

TO DO list

- Extend toward finite μ_B , μ_S , μ_C regime as it should be addressed in low-energy heavy ion collisions.
- Consistently determine shear, bulk and diffusive corrections to distribution function and corresponding transport coefficients.