

EVENT-BY-EVENT AVFD FRAMEWORK

Shuzhe Shi McGill University

On behalf of the AVFD group

CME In Heavy-Ion Collisions

Anomalous-Viscous Fluid Dynamics

$$D_{\mu}J_{R^{\mu}} = + \frac{N_{c}q^{2}}{4\pi^{2}}E_{\mu}B^{\mu} \qquad D_{\mu}J_{L^{\mu}} = -\frac{N_{c}q^{2}}{4\pi^{2}}E_{\mu}B^{\mu}$$

$$J_{R^{\mu}} = n_{R}u^{\mu} + v_{R^{\mu}} + \frac{N_{c}q}{4\pi^{2}}\mu_{R}B^{\mu} \qquad \textbf{CME}$$

$$J_{L^{\mu}} = n_{L}u^{\mu} + v_{L^{\mu}} + \frac{N_{c}q}{4\pi^{2}}\mu_{L}B^{\mu} \qquad \textbf{Viscous Effect}$$

$$\Delta^{\mu}{}_{\nu}d v_{R,L^{\nu}} = -\frac{1}{\tau_{rlx}}(v_{R,L^{\mu}} - v_{NS^{\mu}})$$

$$v_{NS^{\mu}} = \frac{\sigma}{2}T\Delta^{\mu\nu}\partial_{\nu}\frac{\mu}{T} + \frac{\sigma}{2}qE^{\mu}$$

as the linear perturbation on top of 2+1D Hydro background

► B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

 $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + \dots$

► B field $\otimes \mu_5 \Rightarrow$ current \Rightarrow dipole (charge separation)

 $dN_{\pm}/d\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + \dots$

• charge separation \Rightarrow charge dept. two-particle correlation

 $\gamma = \langle \cos(\varDelta \phi_{i} + \varDelta \phi_{j}) \rangle = \langle \cos\varDelta \phi_{i} \cos\varDelta \phi_{j} \rangle - \langle \sin\varDelta \phi_{i} \sin\varDelta \phi_{j} \rangle$ $\delta = \langle \cos(\varDelta \phi_{i} - \varDelta \phi_{j}) \rangle = \langle \cos\varDelta \phi_{i} \cos\varDelta \phi_{j} \rangle + \langle \sin\varDelta \phi_{i} \sin\varDelta \phi_{j} \rangle$ $\gamma = \kappa v_{2} F - H$ $\delta = F + H$ F: Bulk Background H: Possible Pure CME Signal = (a_{1,CME})²

Anomalous-Viscous Fluid Dynamics Packages 04

1st generation: [1611.04586 & 1711.02496] Smooth IC + Hydro + Cooper-Frye Dist. + Res. Decay (Glauber) (VISH) (iS) (iS)

Anomalous-Viscous Fluid Dynamics Packages 04

1st generation: [1611.04586 & 1711.02496] Smooth IC + Hydro + Cooper-Frye Dist. + Res. Decay (Glauber) (VISH) (iS) (iS)

Anomalous-Viscous Fluid Dynamics Packages 04

1st generation: [1611.04586 & 1711.02496] Smooth IC + Hydro + Cooper-Frye Dist. + Res. Decay (Glauber) (VISH) (iS) (iS)

2nd generation: [1910.14010] EbE IC + Hydro + grand-canonical sampler + Had. Cascade (superMC) (VISH) (iSS w/ PLCC) (UrQMD)

3rd generation:

EbE IC + Hydro + micro-canonical sampler + Had. Cascade(AVFD-IC) (MUSIC)(Oliinychenko-Koch)(smash)

Anomalous-Viscous Fluid Dynamics (3rd Gen.) 05

- MC-Glauber Generator
- New feature: able to test nucleon distribution

Anomalous-Viscous Fluid Dynamics (3rd Gen.) 05

Anomalous-Viscous Fluid Dynamics (3rd Gen.) 05

Determining Patch Size in micro.-can. FO

solid: $n_5=0$, dash: $n_5/s=0.2$; using smooth (event avg.) hydro uncertainty band not shown;

sensitive to both signal and background

Determining Patch Size in micro.-can. FO

$$\gamma^{\rm OS-SS} \{\rm RP\} \sim \gamma^{\rm OS-SS}_{\rm bkg} + 2a_{1,\rm CME}^2$$
$$\delta^{\rm OS-SS} \sim \delta^{\rm OS-SS}_{\rm bkg} - 2a_{1,\rm CME}^2$$

$$\gamma^{\rm OS-SS} \{\rm RP\} + \delta^{\rm OS-SS}$$

shall be (mostly) background

"central value": *E*_{patch} = 45 GeV

Correlation between IC & Hydro

each point stands for one event

80

 ϵ_2 strong, sys. indept. correlation of mul. & ell.

Correlation between IC & Hydro

strong, sys. indept. correlation of mul. & ell.

Correlation with Final Hadron dist.

each point stands for one event

Correlation with Final Hadron dist.

CME-related quantities vs. impact parameter ¹⁰

comparison between different systems: B field ~ b (for central collisions)

CME-related quantities vs. centrality

comparison between different systems:

B field ~ b (for central collisions)

charge dipole & separation ~ centrality (if the same n₅/s)

CME-related quantities vs. multiplicity

comparison between different systems:

B field ~ b (for central collisions)

charge dipole & separation ~ centrality (if the same n_5/s) well separated if binned by multiplicity

3×10⁶ min-bias Au+Au events, for each n₅

10⁶ min-bias Cu+Cu events, for each n₅

 $E_{\text{patch}} \sim 45 \text{ GeV}$ looks promising to estimate the background, Need further tunes & more investigations to test the sensitivity,...

delta-correlator in different systems

delta-correlator:

If only background: sys. indept. correlation with multiplicity If large enough CME: well separated

10⁶ min-bias events for each system & n₅

Enough to show its sensitivity to CME, but need more statistics to distinguish the isobar systems Question: Are we on the right track?

Answer:

Let's take a look at the comparison of quantities that require less statistics.

other comparisons in isobaric collisions

Black & Blue: Bulk Background

Clear separation in B field strength & charge dipole

other comparisons in isobaric collisions

Black & Blue: Bulk Background

Clear separation in B field strength & charge dipole Multiplicity binning further eliminate possible difference in background The most updated EBE-AVFD package:

- 1) micro-canonical sampler implemented
- 2) look promising to describe both CME signal & non-CME background
- To-Do:
 - 1) More statistics
 - 2) Further tune Epatch
 - 3) Coupled with more realistic B field evolution (see Anping
 - Huang's Talk)

THANK YOU!

BACKUP SLIDES

LCC implementation in the 2nd Gen.

take neutral systems $(\mu = 0)$ as example

In the current particle sampler,

two ways to sample particles in a single FOHS cell:

(a) grand-canonical ensamble (both N_{net} , E fluctuate) $N_{pos} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ $N_{neg} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ N_{pos} and N_{neg} are not necessarily the same

(b) canonical ensamble (N_{net} conserved, E fluctuates) $N_{pos} \sim Poisson Distribution with mean \langle N \rangle = N_{thermal}$ $N_{neg} = N_{pos}$ B. Schenke, C. Shen, P. Tribedy, arXiv:1901.04378

A hybrid approach?

c) for every cell, randomly choose (a) or (b), according to given acceptance probability P_{LCC} being a parameter $\in [0,1]$.

- PLCC of the charged particles freeze-out *in pairs*, from the *same* cell of hyper-surface;
- 1-PLCC of the charged particles freeze-out *independently*.

Non-CME Background

Different deformation schemes:

black - no deformation (both are spherical)

red - Ru is more deformed

blue - Zr is more deformed

CME in IsoBar System

Joint cut of **Multiplicity** \otimes **Eccentricity** \Rightarrow same background!