

Nucleon Gluon Distribution Function from 2+1+1-Flavor Lattice QCD

Zhou-You Fan

Based on: 2007.16113, in collaboration with

Rui Zhang

Huey-Wen Lin

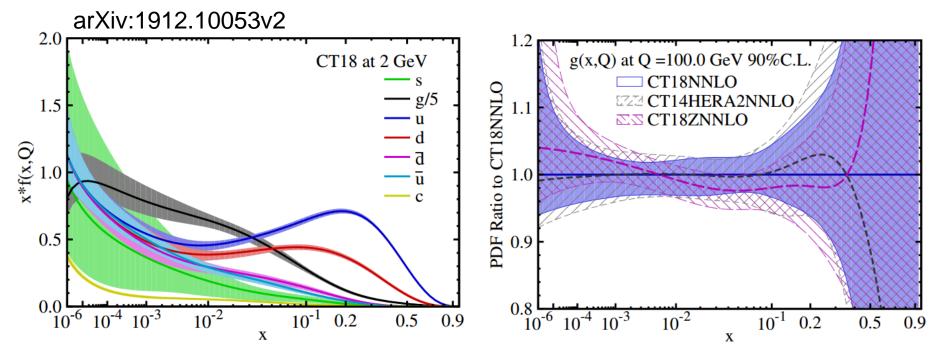
LAMET 2020

09/11/2020

Outline

- Background
- Lattice setup and matrix element
- Results
 - Extrapolation to physical pion mass
 - Reduced and evolved ITDs fit
 - Comparison with global fit gluon PDFs
- Conclusion and outlook

Parton Distribution Functions (PDF) represents the probability densities to find a parton carrying a momentum fraction x at energy scale Q.



Gluon PDF dominates and its relatively error is large at large x region

To improve the gluon PDF,

- Global fit with more data from experimental runs
- Theoretical calculation

Large Momentum Effective Theory

Large Momentum Effective Theory (LaMET) [PRL 110.26 (2013): 262002]. is a direct approach to compute parton physics on a Euclidean lattice through Lorentz boost.

The unpolarized gluon distribution in the nucleon in the light-cone coordinates

$$g(x,\mu^{2}) = \int \frac{d\xi^{-}}{2\pi x P^{+}} e^{-ix\xi^{-}P^{+}} \left\langle P \left| F_{\mu}^{+}(\xi^{-}) \mathcal{P} \exp\left(-ig \int_{0}^{\xi^{-}} d\eta^{-} A^{+}(\eta^{-})\right) F^{\mu^{+}}(0) \right| P \right\rangle$$

The unpolarized gluon quasi-PDF is defined as

$$\tilde{g}(x,\mu^2,P^z) = \int \frac{dz}{2\pi x P^z} e^{ixzP^z} \left\langle P \left| F_{\mu}^{z}(z) \mathcal{P} \exp\left(-ig \int_{0}^{z} d\eta A^z(\eta)\right) F^{\mu z}(0) \right| P \right\rangle$$

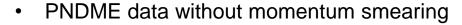
The quasi-PDF can be related to the P_z -independent light-front PDF through,

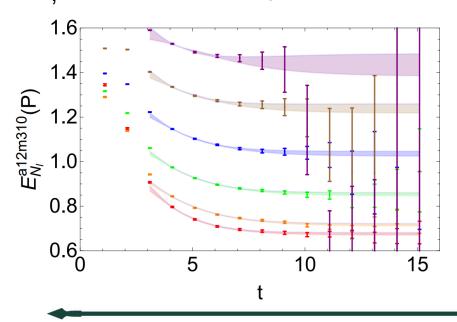
$$\tilde{g}(x,\mu^2,P^z) = \int_{-1}^{1} \frac{dy}{y} C\left(\frac{x}{y},\frac{\mu}{yP^z}\right) g(y,\mu^2) + \mathcal{O}\left(\left(\frac{M}{P^z}\right)^2,\left(\frac{\Lambda_{QCD}}{P^z}\right)^2\right)$$

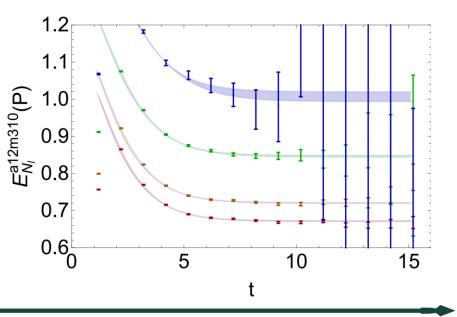
The lattice calculation are carried out with Clover valence quarks on the MILC $N_f=2+1+1$ HISQ fermion gauge configurations with $L^3\times T=24^3\times 64$, a = 0.1207(11) fm, $m_\pi^{sea}=306.9(5)$ MeV, $N_{cfg}=898$. The total measurements equal to 57472.

To reach higher-momentum states, we use **Gaussian momentum smearing** [1602.05525] for the quark field $\psi(x) + \alpha \sum_{j} U_{j}(x) e^{ik\hat{e}_{j}} \psi(x + \hat{e}_{j})$.

Momentum smearing parameter k=2.9







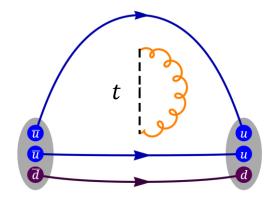
Gluon operator and ratio method

In the paper [arXiv:1910.13963], the unpolarized multiplicatively renormalizable gluon operators are defined,

$$O_g(z) = \sum_{i \neq z, t} O(F^{ti}, F^{ti}; z) - \sum_{i \neq z, t} O(F^{ij}, F^{ij}; z),$$

where the operator $O(F^{\mu\nu}, F^{\rho\sigma}; z) = F^{\mu\nu}(z)U(z, 0)F^{\rho\sigma}(0)$.

We use the ratio of 3-point correlator and 2-point correlator to extract the ground state matrix element. The ratio is defined by,



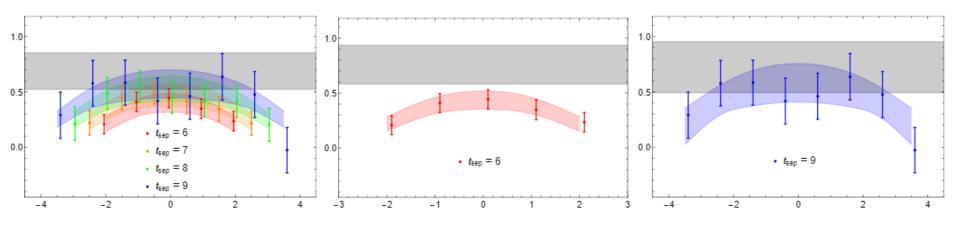
 t_{sep}

$$R(z, P_z; t_{sep}, t) \equiv \frac{C_{3pt}(z, P_z; t_{sep}, t)}{C_{2pt}(z, P_z; t_{sep}, t)} = \frac{\langle 0 | \Gamma^e \int d^3y e^{-iyP} \chi(\vec{y}, t_{sep}) O(z, t) \chi(\vec{0}, 0) | 0 \rangle}{\langle 0 | \Gamma^e \int d^3y e^{-iyP} \chi(\vec{y}, t_{sep}) \chi(\vec{0}, 0) | 0 \rangle}$$

Following the work [arXiv:1306.5435v3], the correlators C_{3pt} and C_{2pt} can be decomposed as,

$$\begin{split} C_{3pt}\big(z,P_z;t_{sep},t\big) &= |A_0|^2 \langle 0|O|0\rangle e^{-E_0t_{sep}} \\ &+ A_1 A_0^* \langle 1|O|0\rangle e^{-E_1(t_{sep}-t)} e^{-E_0t} \\ &+ A_0 A_1^* \langle 0|O|1\rangle e^{-E_0(t_{sep}-t)} e^{-E_1t} + \cdots \\ C_{2pt}\big(z,P_z;t_{sep}\big) &= |A_0|^2 e^{-E_0t} + |A_1|^2 e^{-E_1t} + \cdots \end{split}$$

where the ground state matrix element is $\langle 0|O_g|0\rangle$.



The ground state matrix element extracted from the fit (grey band) from different fit choices are consistent within one sigma error.

The reduced loffe-time distribution (ITDs) definition <u>arXiv:1706.05373</u>,

$$\mathcal{M}(v,z^2) = \frac{M(v,z^2)/M(v,0)}{M(0,z^2)/M(0,0)}$$

where $M(v, z^2) = \langle 0 | O_g(z) | 0 \rangle$, loffe-time $v = zP_z$.

The gluon pseudo-PDF matching condition,

$$\mathcal{M}(\nu, z^2) = \int_0^1 dx \frac{xg(x, \mu^2)}{\langle x_g \rangle_{\mu^2}} (R_1(x\nu, z^2 \mu^2) + R_2(x\nu))$$

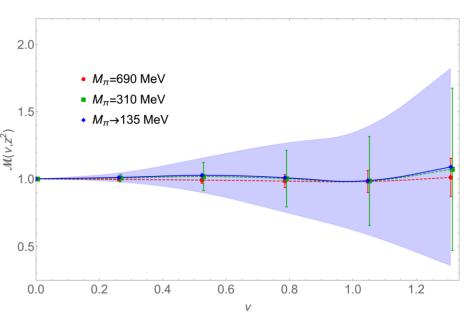
where $R_1(x\nu, z^2\mu^2)$ is the term related to evolution, $R_2(x\nu)$ is the term related to scheme conversion. The specific definition can be found in <u>arXiv:2007.16113</u>.

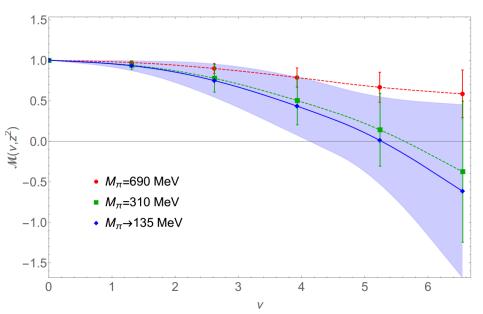
The evolved ITD definition,

$$G(v, z^2, \mu, M_{\pi}) = \mathcal{M}(v, z^2, M_{\pi}) + \int_0^1 du \, R_1(u, z^2 \mu^2) \, \mathcal{M}(uv, z^2, M_{\pi})$$

Extrapolation in the pion mass







$$\mathcal{M}(v, z^2, M_{\pi}) = \mathcal{M}(v, z^2, M_{\pi}^{phys}) + K(v, z^2)(M_{\pi}^2 - (M_{\pi}^{phys})^2)$$

The blue band show the uncertainties of the results after extrapolation to the physical pion mass.

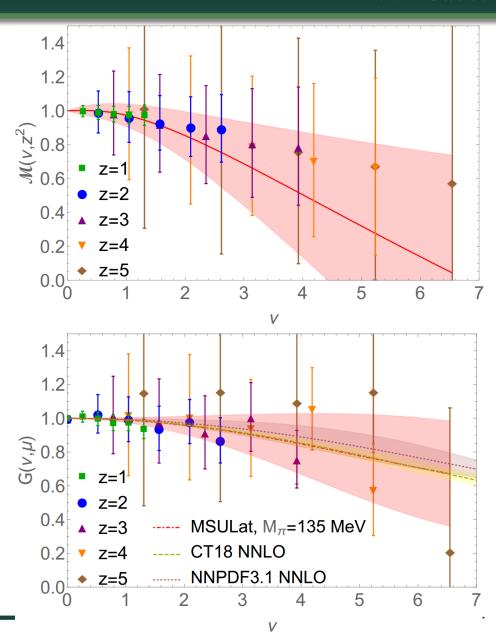
The reduced ITDs and their reconstructed fitted band from "z-expansion",

$$M(\nu, z^2, M_{\pi}) = \sum_{k=0}^{\text{kmax}} \lambda_k \tau^k$$
,

$$\tau = \frac{\sqrt{\nu_{cut} + \nu} - \sqrt{\nu_{cut}}}{\sqrt{\nu_{cut} + \nu} + \sqrt{\nu_{cut}}}$$

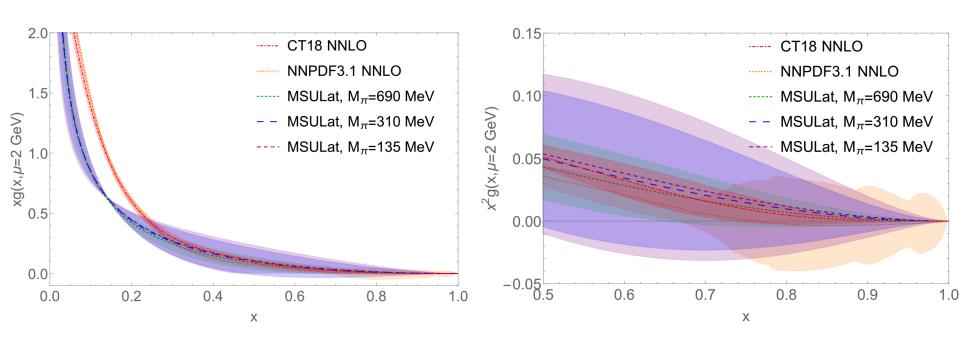
The evolved ITDs and their reconstructed fitted band from gluon PDF functional form fit,

$$f_g(x,\mu) = \frac{xg(x,\mu)}{\langle x_g \rangle_{\mu^2}}$$
$$= \frac{x^A (1-x)^C}{B(A+1,C+1)}$$



Comparison with the global fit PDFs

The comparison of the reconstructed unpolarized gluon PDF from the function form with CT18 NNLO and NNPDF3.1 NNLO gluon unpolarized PDF at $\mu = 2~GeV$ in the $\overline{\rm MS}$ scheme.



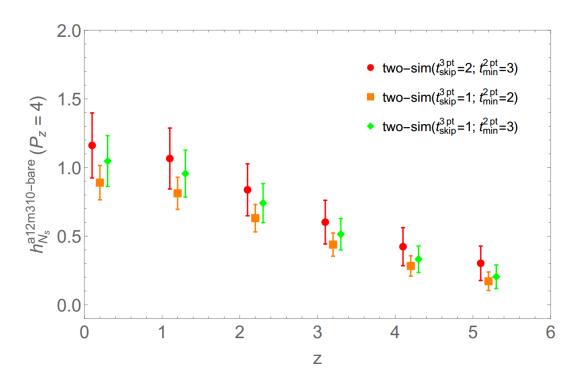
Conclusion and outlook

- We extract the gluon PDF as a function of Bjorken-x for the first time. There are systematics yet to be studied in this work.
- Future work is planned to study additional ensembles at different lattice spacings so that we can include the lattice-discretization systematics.
- Lighter quark masses should be used to control the chiral extrapolation to obtain more reliable results at physical pion mass.

Thank you!

Fit range choice

The fit range for 2pt and 3pt correlator are checked for the bare matrix elements extracted from the fit.



$$M_{\pi} = 690 \text{ MeV nucleon}$$

Nucleon momentum
$$P_z = 4 * \frac{2\pi}{L}$$

We choose $t_{skip}^{3pt} = 1$, $t_{min}^{2pt} = 3$ in our following fits considering the error of the fit results and χ^2/dof of the fits.

