UV Divergence of the Quasi-PDF Operator under the Lattice Regularization

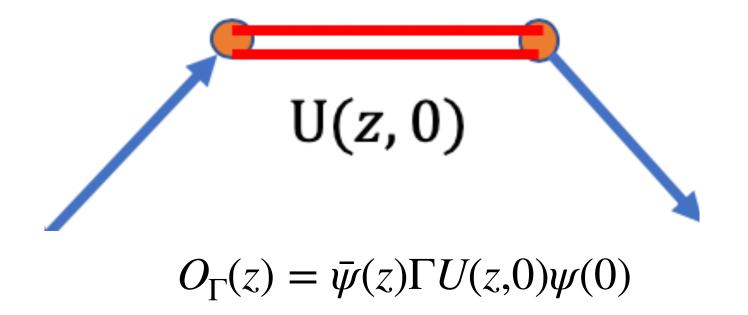
Yi-Bo Yang on behalf of Yi-Kai Huo and Peng Sun

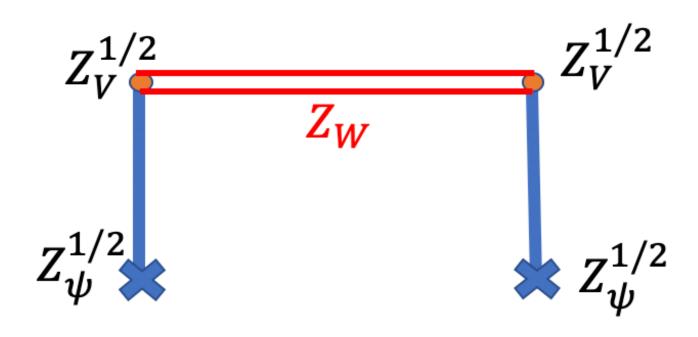
Lattice Parton Collaboration

Quasi-PDF operator

Several renormalization procedures

- O Naive counterterm $Z = Ce^{\frac{\delta m(a)}{a}Z}$
- $\delta m(a)$ from $\langle O_{\gamma_z}(z) \rangle$,
- $\delta m(a)$ from $\langle O_{\gamma_t}(z,t)O_{\gamma_t}^{\dagger}(z,0)\rangle$,
- $\delta m(a)$ from Wilson loop,
- $\delta m(a)$ from the regularization independent momentum subtraction (RI/MOM) scheme.
- Hybrid method based on RI/MOM





MILC configurations at 4 lattice spacings

β	L	L_t	$C_{ m SW}$	m_q	$a_{\rm phy}({\rm fm})$
3.60	24	64	1.05088	-0.0695	0.120
3.78	32	96	1.04239	-0.05138	0.090
4.03	48	144	1.03493	-0.0398	0.060
4.20	64	192	1.03144	-0.0365	0.045

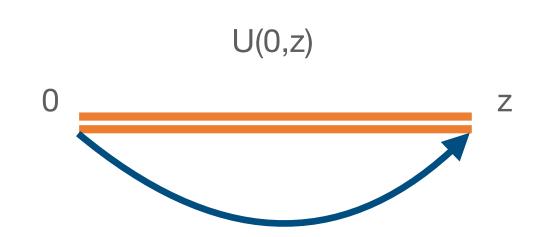
• $\delta m(a)$ from $\langle O_{\gamma_z}(z) \rangle$

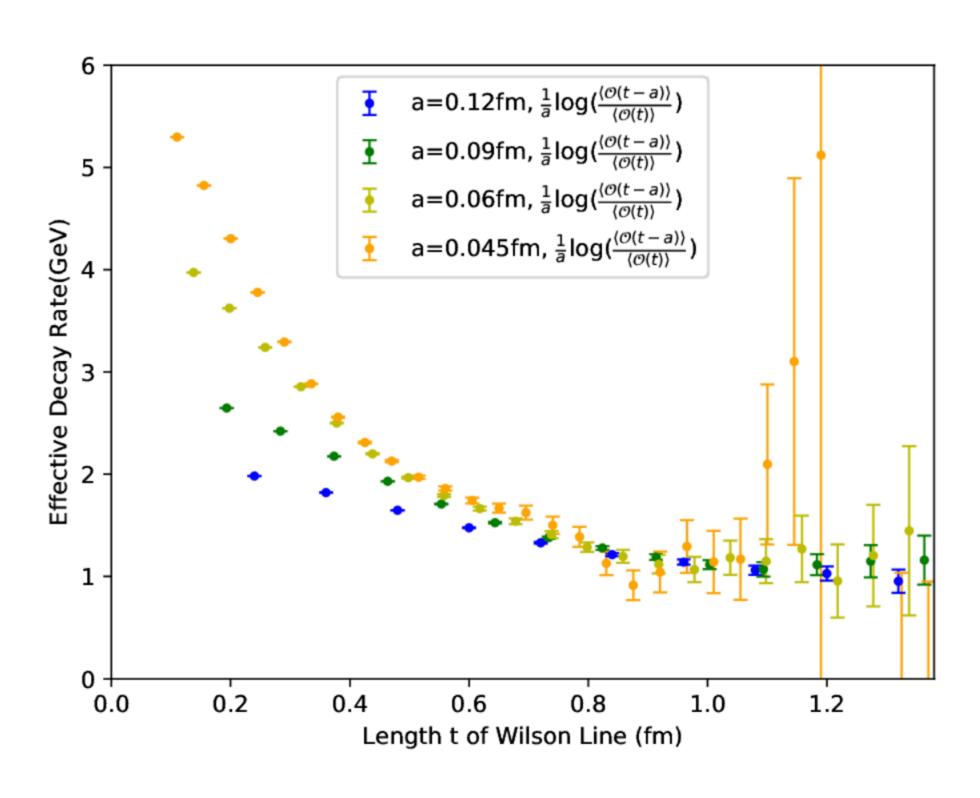
• Vacuum expectation value of $O_{\gamma_z}(z)$

$$\frac{1}{a} \log(\frac{\langle O_{\gamma_z}(z-a) \rangle}{\langle O_{\gamma_z}(z) \rangle)}) = \frac{\delta m^{VEV}}{a} + f(z) + \mathcal{O}(a);$$

• Above ratio seems to converge in the continuum limit, and then $\delta m^{VEV} \sim 0$;

 It is understandable since the possible paths in the quark propagator increase exponentially with 1/a, and then they would cancel the linear divergence.





• $\delta m(a)$ from $\langle O_{\gamma_t}(z,t)O_{\gamma_t}^{\dagger}(z,0)\rangle$ and Wilson Loop

$$M(t,z) \equiv \langle O_{\gamma_t}(z) O_{\gamma_t}^{\dagger}(z) \rangle$$

$$\frac{1}{a} \log(\frac{M(t, z - a)}{M(t, z)}) \big|_{t=0.18 \text{fm}} = 2\left(\frac{\delta m^{VEV2}}{a} + m_0(z)\right)$$

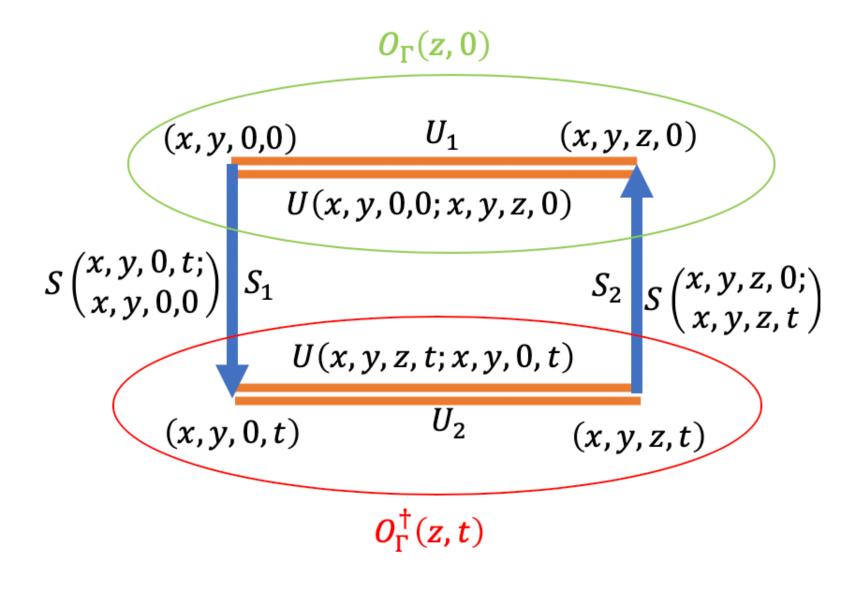
Wilson loop

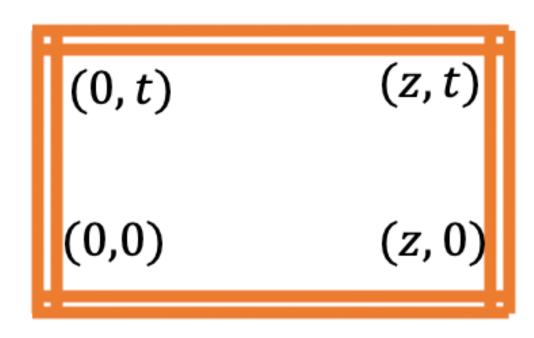
$$U(t,z) = \langle U(0,t;z,t)U(z,t;z,0)U(z,0;0,0)U(0,0;0,t) \rangle$$

$$\frac{1}{2} \log(\frac{U(t-a,z)}{U(t,z)}) \big|_{t\to\infty} = \frac{c_0}{z} + 2(\frac{\delta m^{Loop}}{a} + m_0) + \sigma z$$

 Wilson loop uses infinite heavy quark line instead of the light quark propagator.

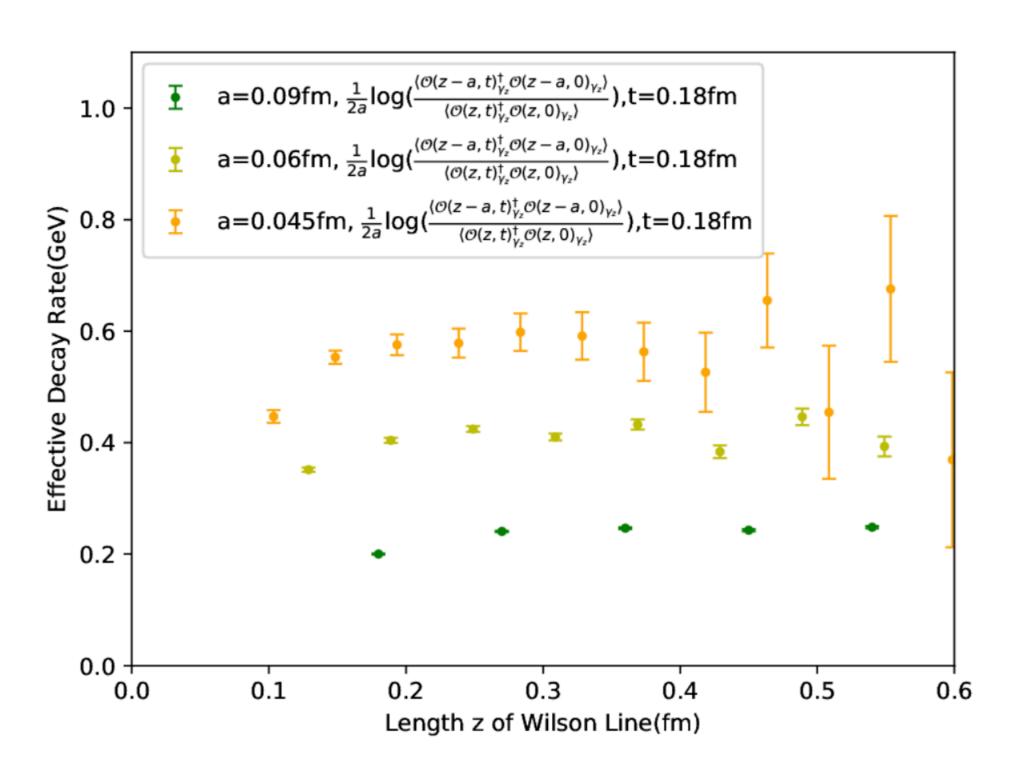
Definitions

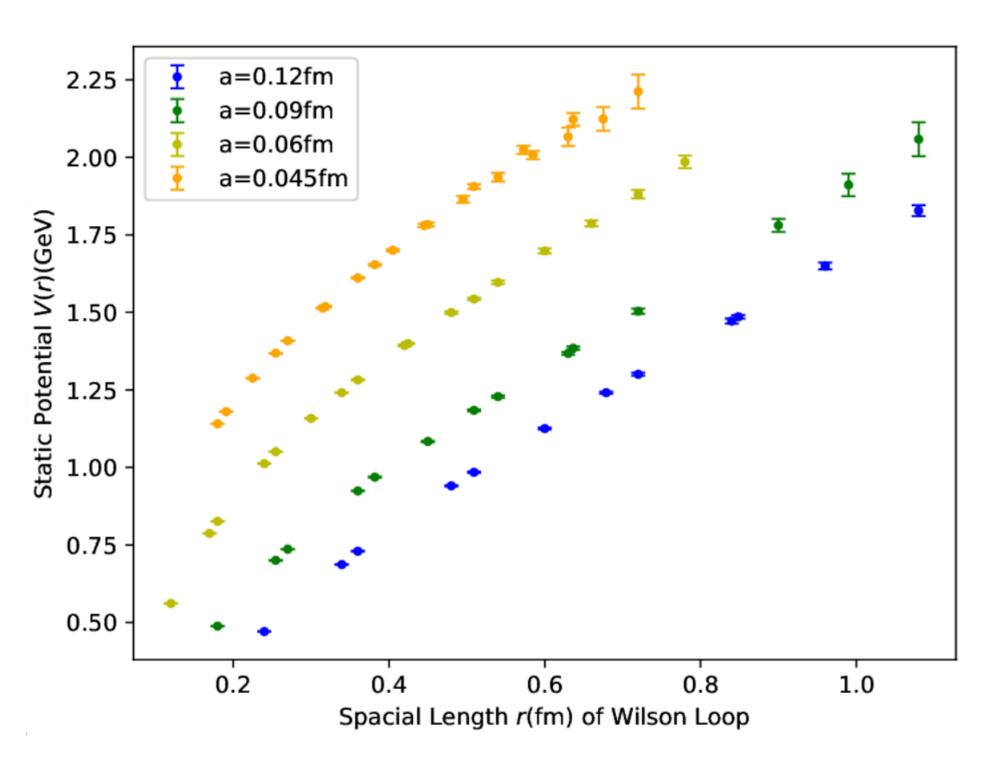




• $\delta m(a)$ from $\langle O_{\gamma_t}(z,t)O_{\gamma_t}^{\dagger}(z,0)\rangle$ and Wilson Loop

Results



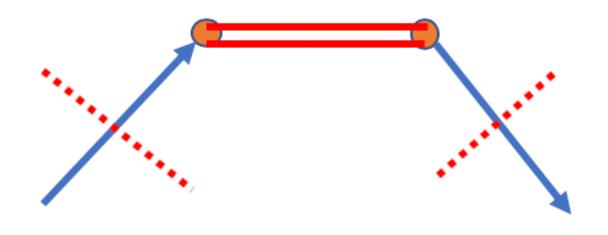


$$\tilde{V}(z) = 2\left(\frac{\delta m^{VEV2}}{a} + m_0(z)\right)$$
$$\delta m^{VEV2} \sim 0.15(2)$$

The values in these two cases are consistent with each other.

$$V(z) = \frac{c_0}{z} + 2(\frac{\delta m^{Loop}}{a} + m_0) + \sigma z$$
$$\delta m^{Loop} \sim 0.15(1)$$

• $\delta m(a)$ from RI/MOM

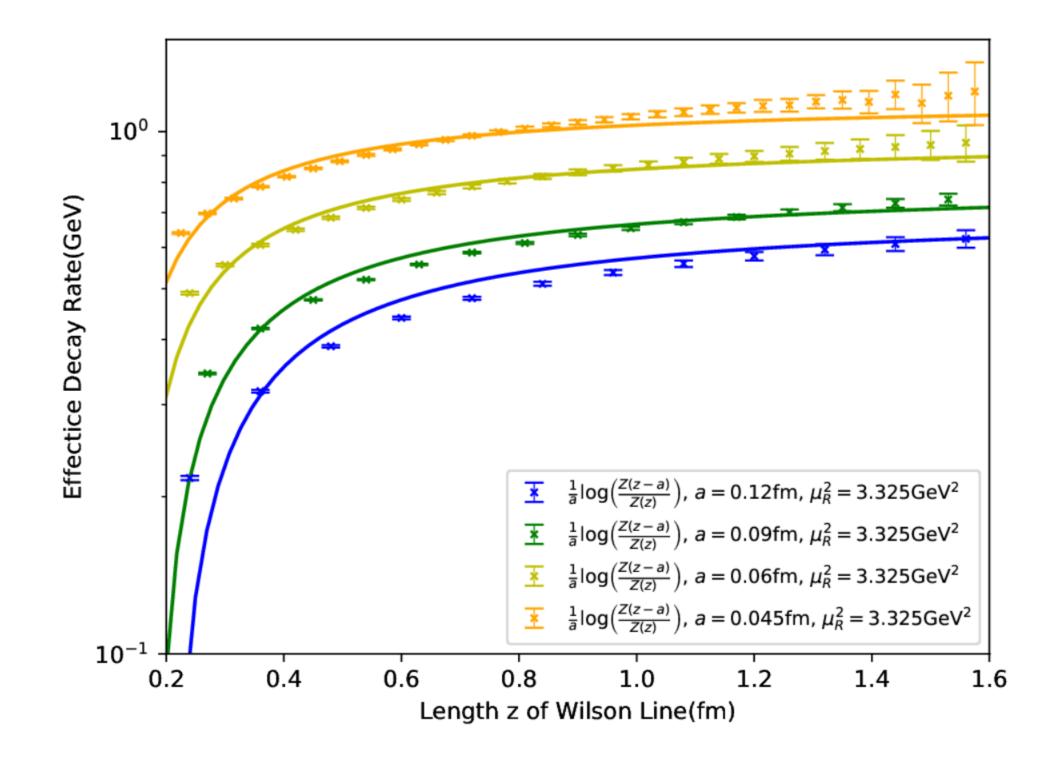


Simple fit

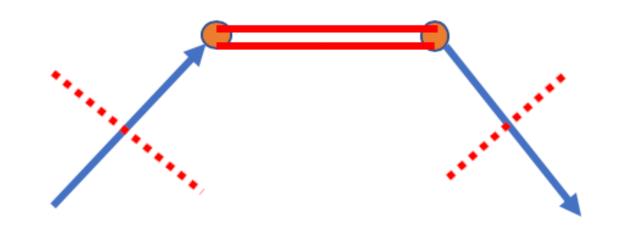
$$^{\circ} Z(z, a, \mu_R) = \frac{\langle p | O_{\gamma_t}(z) | p \rangle}{\langle p | O_{\gamma_t}(z) | p \rangle_{tree}} \Big|_{p^2 = -\mu_R^2, p_z = 0}$$

$$\frac{1}{a}\log(\frac{Z(z,a)}{Z(z-a,a)}) = \frac{\delta m^{RI/MOM}}{a} + f(z);$$

• Fit Z(z,a) with the form $Z(z,a) = C_0(a)e^{-\frac{\alpha_s(a)}{\alpha_s(a=0.12 {\rm fm})}} \left\{ \left(\frac{\delta m^{RI}}{a} + m_0^{RI} \right) z + c_1 {\rm log}(\frac{z}{z_0}) \right\}$ in the range $z \in [0.3,2] {\rm fm}$ and $a \in [0.04,0.12] {\rm fm}$ gives $\chi^2 \sim 130$ and $\delta m \sim 0.23(1)$.



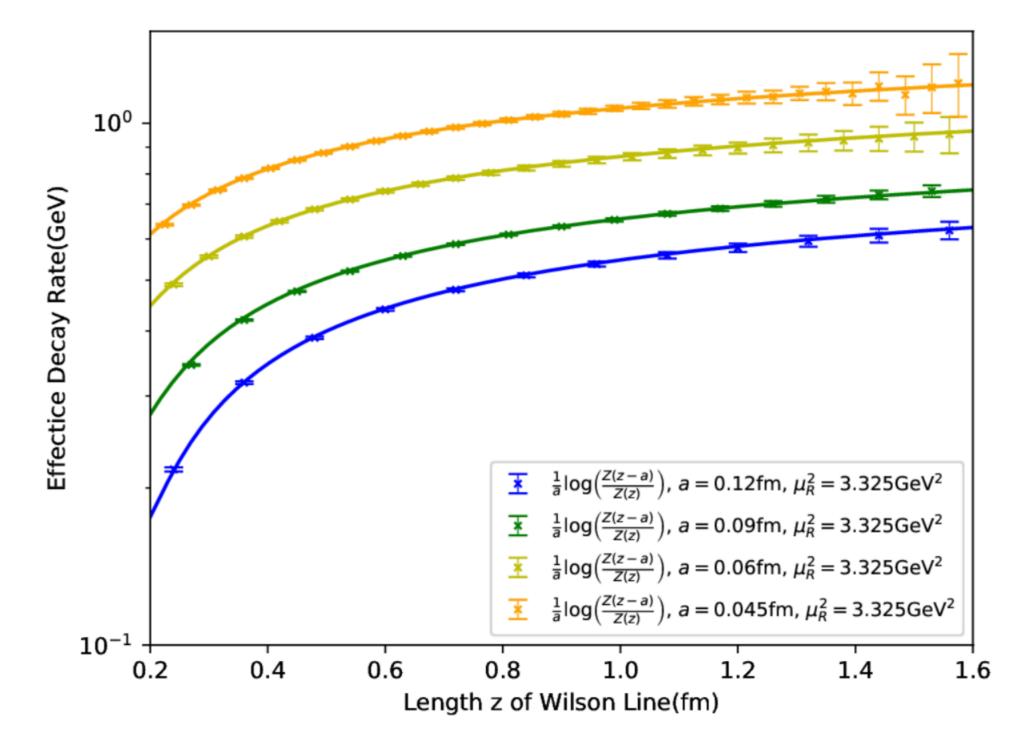
• $\delta m(a)$ from RI/MOM



Modified fit

$$Z(z, a) = C_0(a)e^{-\frac{\alpha_s(a)}{\alpha_s(a = 0.12\text{fm})}(1 + c_2\log(\frac{z}{z_0}))\left\{\left(\frac{\delta m^{RI}}{a} + m_0^{RI}\right)z + c_1\log(\frac{z}{z_0})\right\}}$$

- . The $1+c_2\log(\frac{z}{z_0})$ factor would come from the resummation on the 1/z scale dependence, and make the linear divergence to be stronger at larger z.
- Fit Z(z,a) with above form in the range $z \in [0.3,2] \text{fm}$ and $a \in [0.04,0.12] \text{fm}$ gives $\chi^2 \sim 1$ and $\delta m \sim 0.16(1)$ with $z_0 = 0.3 \text{fm}$.



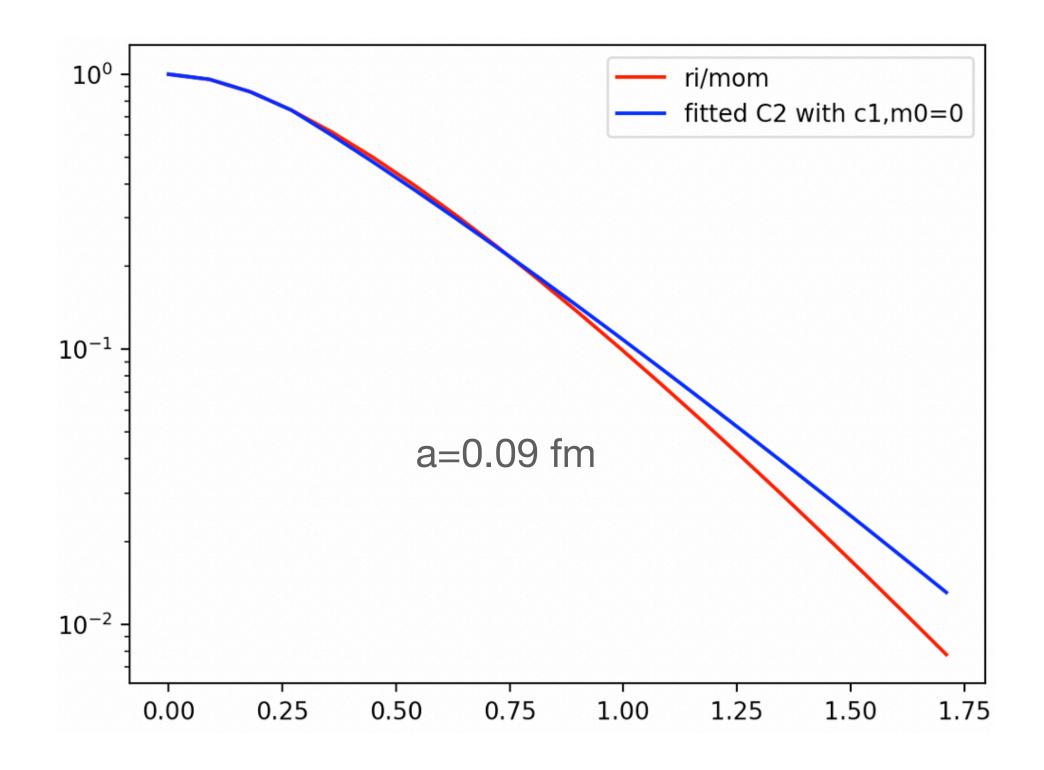
Hybrid method based on RI/MOM

- Separate the z-range into different parts and treat them differently
- At small distance $0 \le z \le z_0$ ($z_0 \sim 0.3 \mathrm{fm}$), use RI/MOM renormalization

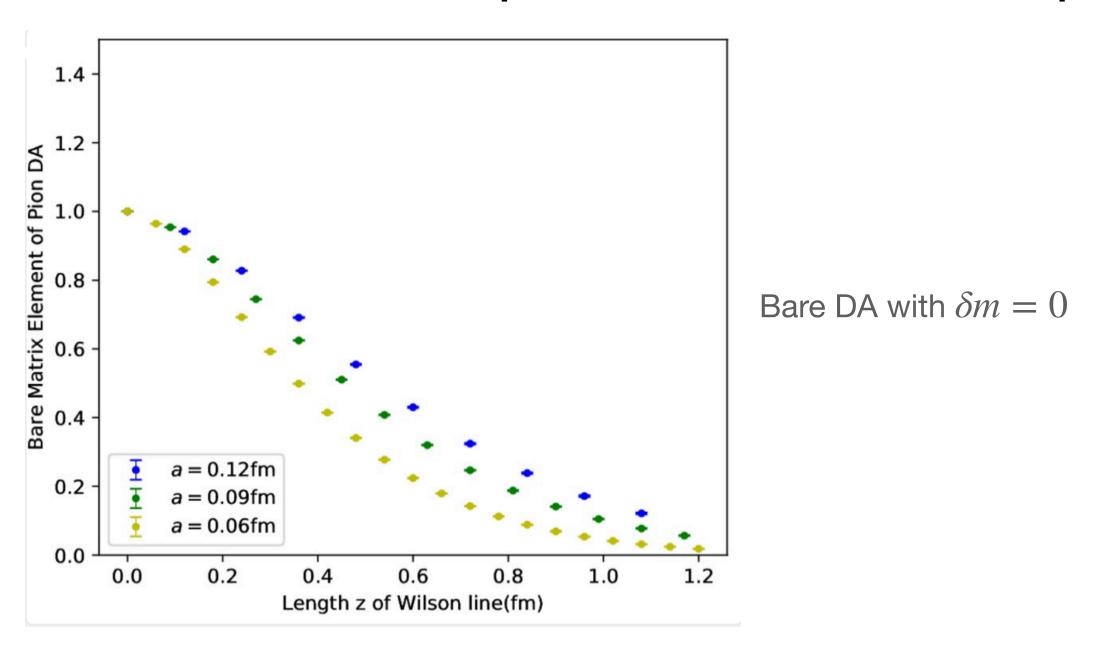
$$Z(z < z_0, a) = Z^{RI}(z, a)$$

• At larger distance $z_0 \le z$, use modified mass renormalization

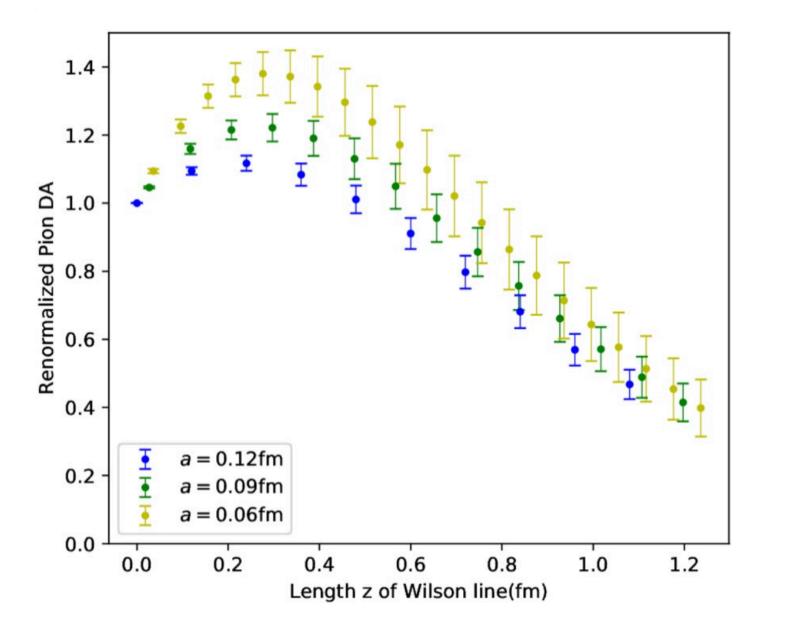
$$Z(z > z_0, a) = Z(z_0, a)e^{-\frac{\alpha_s(a)}{\alpha_s(a = 0.12\text{fm})}(1 + c_2\log(\frac{z}{z_0}))\frac{\delta m^{RI}}{a}(z - z_0)}$$



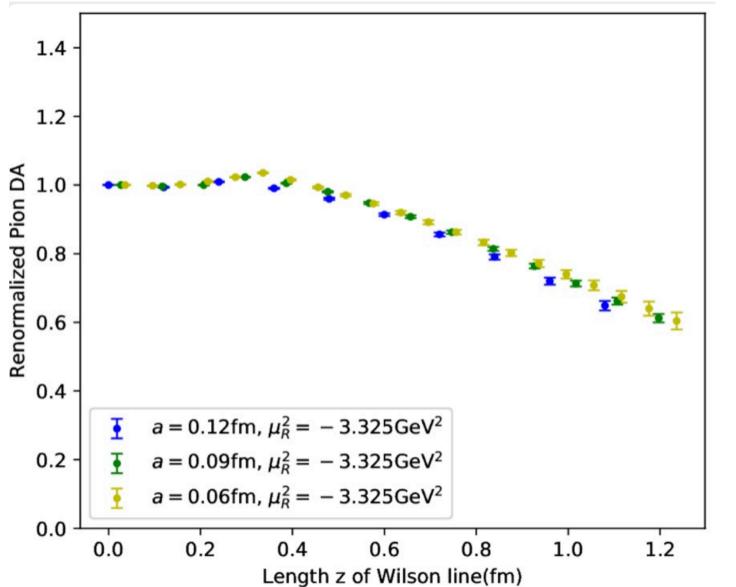
• Renormalized pion distribution amplitude (DA) matrix elements in the rest frame



- Pion DA matrix element with $P_z = 0$;
- Only the hybrid scheme with modified mass renormalization can remove the linear divergence in the bare pion DA matrix element.



Renormalized DA with $\delta m = 0.15(2)$ $Z \propto e^{\frac{\alpha_s(a)}{\alpha_s(a=0.12\text{fm})} \frac{\delta m^{Loop}}{a} z}$



Renormalized DA with hybrid scheme

$$Z \propto e^{\frac{\alpha_s(a)}{\alpha_s(a=0.12\text{fm})}(1+c_2\log(\frac{z}{z_0}))\frac{\delta m^{RI}}{a}(z-z_0)}$$

Summary

- We calculated the lattice spacing dependence of kinds of matrix elements with Wilson links.
- O A $\log(z)$ dependence of the linear divergence term exists in both the RI/MOM quark matrix element and hadron ones, but not $\langle O_{\gamma_z}(z) \rangle$, $\langle O_{\gamma_t}(z,t) O_{\gamma_t}^{\dagger}(z,0) \rangle$ or Wilson loop.
- Hybrid renormalization scheme with the modified mass renormalization, $Z(z>z_0,a)=Z(z_0,a)e^{-\frac{\alpha_s(a)}{\alpha_s(a=0.12\mathrm{fm})}(1+c_2\log(\frac{z}{z_0}))\frac{\delta m^{RI}}{a}(z-z_0)}, \text{ can be a proper choice to remove the linear divergence in the bare hadron matrix element of } O_{\gamma_z}(z).$