

Matching for the twist-3 PDFs

 $g_T(x), \quad e(x)$ & $h_L(x)$:

Success or failure?

Shohini Bhattacharya

11 September 2020

In Collaboration with

Krzysztof Cichy (Adam Mickiewicz U.)

Martha Constantinou (Temple U.)

Andreas Metz (Temple U.)

Aurora Scapellato (Adam Mickiewicz U.)

Fernanda Steffens (Bonn U.)

Outline

- Why twist-3 PDFs?
- Quasi-PDF approach
- Matching: warming up!
- Perturbative corrections for $g_T(x)$, $g_{T,Q}(x)$
- Perturbative corrections for e(x), $e_Q(x)$ $h_L(x)$, $h_{L,Q}(x)$

Based on:

- S.B., Cichy, Constantinou, Metz, Scapellato, Steffens: arXiv:2006.12347
- S.B., Cichy, Constantinou, Metz, Scapellato, Steffens: Phys. Rev. D 102, 034005 (2020), arXiv:2005.10939

Why twist-3 PDFs?

Twist-2 Order of contribution: $\mathcal{O}(1)$		Twist-3	
		Order of contribution	Order of contribution: $\mathcal{O}(1/\mathrm{Q})$
		Jaffe, Ji (PRL 67, 552)/	Jaffe, Ji (Nucl. Phys. B 375, 527
PDFs	Dirac structure	PDFs	Dirac structure
$f_1(x)$	$\Gamma = \gamma^+$	e(x)	$\Gamma = 1$
$g_1(x)$	$\Gamma = \gamma^+ \gamma_5$	$g_T(x)$	$\Gamma=\gamma_{\perp}^i\gamma_5$
$h_1(x)$	$\Gamma = i\sigma^{i+}\gamma_5$	$h_L(x)$	$\Gamma = i\sigma^{+-}\gamma_5$
Density interpr	retation:	No density interpretar	tion:
$f_1(x)$ \bullet		Twist-3	Burkardt (arXiv: 0810.3589
$g_1(x)$ $h_1(x)$ $h_1(x)$		qgq correlation	$\int dx x^2 g_T(x) \to \bot {\bf force}$ $\int dx x^2 e(x) \to \bot {\bf force}$

Quasi-PDF approach

Light-cone (standard) correlator $-1 \le x \le 1$

$$F^{[\Gamma]}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{+} = \vec{z}_{\perp} = 0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- Cannot be computed on Euclidean lattice

Correlator for quasi-PDFs (Ji, 2013)

$$-\infty \le x \le \infty$$

$$F_{\mathbf{Q}}^{[\Gamma]}(x; P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{0} = \vec{z}_{\perp} = 0}$$

- Non-local correlator depending on position z^3
- Can be computed on Euclidean lattice

- Quasi-PDF approach made it possible to directly extract light-cone PDFs from lattice QCD
- Quasi-PDFs & light-cone PDFs have different UV behavior: difference dealt via perturbative matching within LAMET (Ji, 2014)

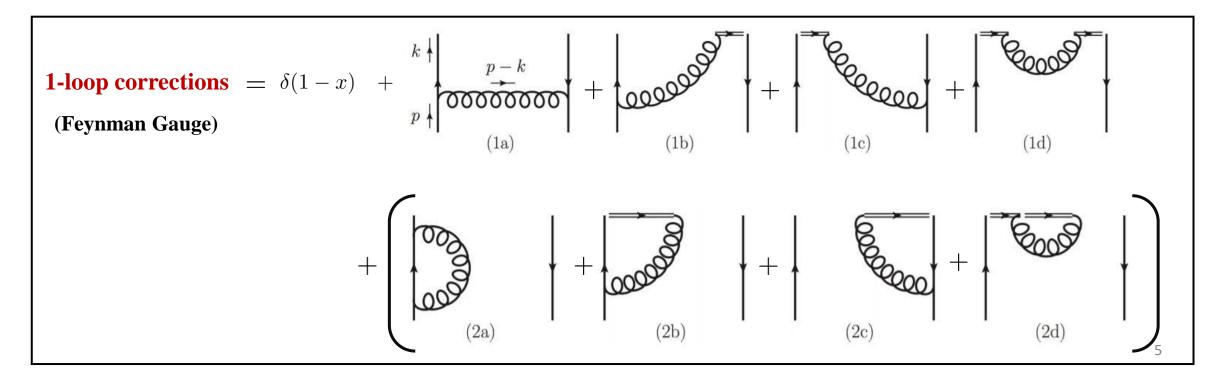
Warming up!

1) Matching formula studied for twist-2:

$$q_{\mathbf{Q}}(x;P^3) = \int_{-1}^{+1} \frac{d\,y}{|y|} C\bigg(\frac{x}{y}\bigg) q(y) + \mathcal{O}\bigg(\frac{M^2}{(P^3)^2}\bigg)$$
 (Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/ Ma, Qiu (2018)/ Chen, Wang, Zhu (2020)/ Li, Ma, Qiu (2020))

2) Perturbative corrections to 1-loop:



Warming up!

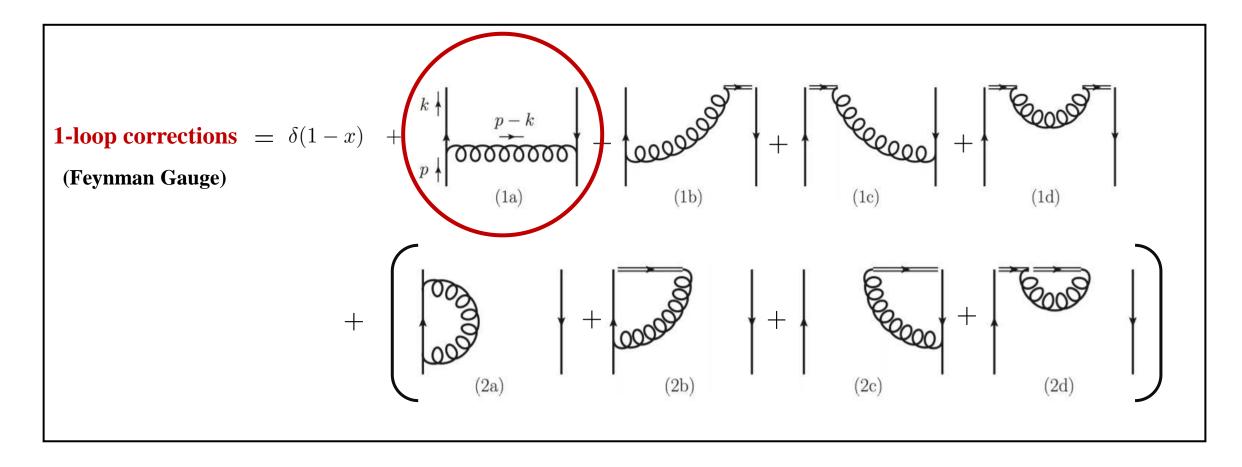
3) Matching kernel:

$$C(x) = \delta(1-x) + \frac{\alpha_s C_F}{2\pi} \left[\widetilde{\Gamma}(x) - \Gamma(x) \right] + \frac{\alpha_s C_F}{2\pi} \delta(1-x) \left[\widetilde{\Pi} - \Pi \right]$$
 Real-corrections

- Essence of such a factorization formula is the IR finiteness of the kernel
- <u>Set up for calculation</u>:
 - i. Feynman Gauge

 ii. UV: $\int^{\infty} d^2k_{\perp} \longrightarrow \epsilon_{\mathrm{UV}}$ iii. IR: $\int_{0} d^2k_{\perp} \longrightarrow \begin{cases} m_q \neq 0 \\ \epsilon_{\mathrm{IR}} \\ m_q \neq 0 \end{cases}$

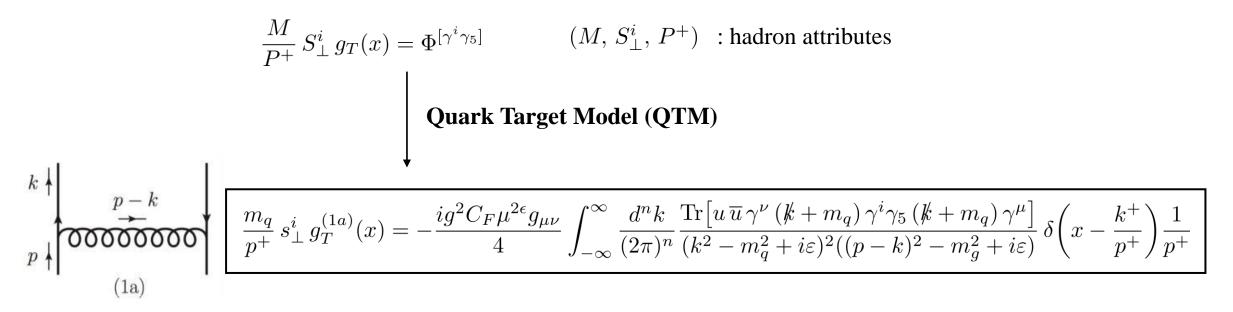
Focus of this talk will be diagram (1a)/ ladder diagram



Ladder diagram: origin of new features at twist-3

Case 1: g_T & $g_{T,Q}$

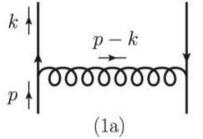
Definition of $g_T(x)$:



- One cannot set m_q to zero at the start in QTM calculations
- Extract linear terms in m_q & then set $m_q = 0$ unless it is used as the IR regulator

Definition of $g_T(x)$:

$$\frac{M}{P^+}\,S^i_\perp\,g_T(x)=\Phi^{[\gamma^i\gamma_5]}$$
 $(M,\,S^i_\perp,\,P^+)$: hadron attributes Quark Target Model (QTM)

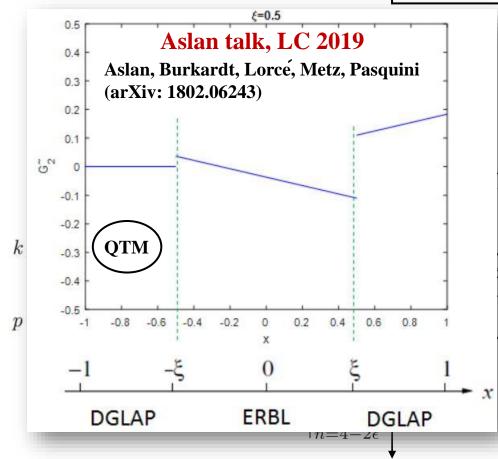


$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$$

Trace algebra $\Big|_{n=4-2\epsilon}$

Power of k^- : not present at twist-2

$$g_T^{(1a)}(x) = -\frac{ig^2 C_F \mu^{2\epsilon}}{(2\pi)^n} p^+ \int_{-\infty}^{\infty} d^{n-2}k_{\perp} dk^- dk^+ \frac{2p^+ k^- + \dots}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^+}{p^+}\right) \frac{1}{p^+}$$



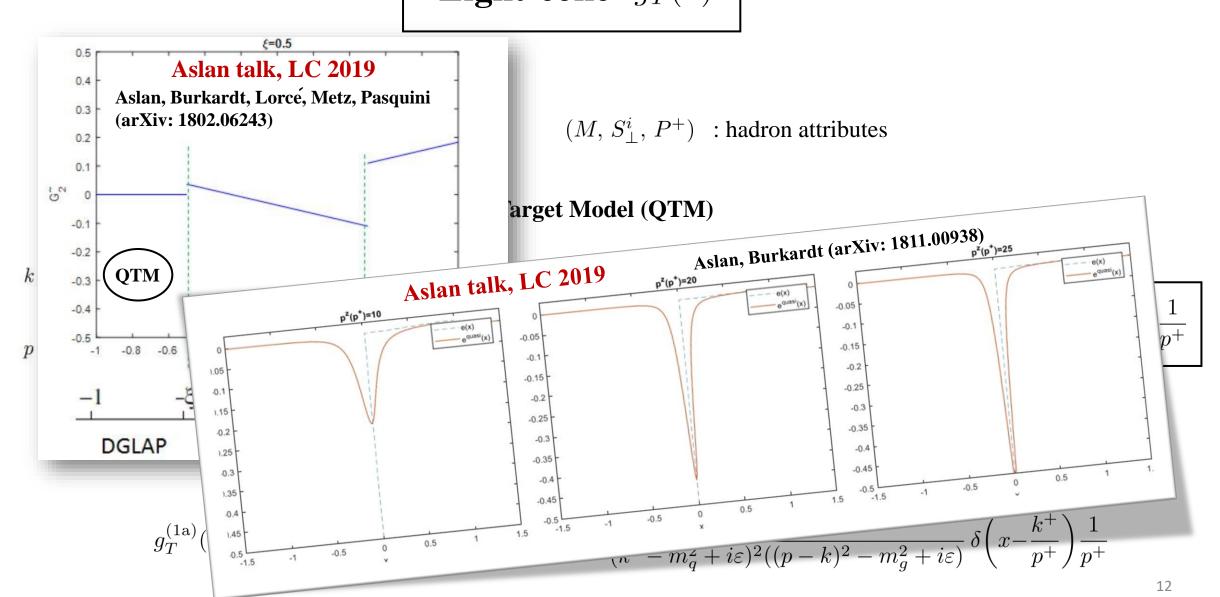
 (M, S^i_{\perp}, P^+) : hadron attributes

arget Model (QTM)

$$\frac{2\epsilon g_{\mu\nu}}{\int_{-\infty}^{\infty} \frac{d^{n}k}{(2\pi)^{n}} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\,(\not k+m_{q})\,\gamma^{i}\gamma_{5}\,(\not k+m_{q})\,\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}\,\delta\left(x-\frac{k^{+}}{p^{+}}\right)\frac{1}{p^{+}}$$

Power of k^- : not present at twist-2

$$g_T^{(1a)}(x) = -\frac{ig^2 C_F \mu^{2\epsilon}}{(2\pi)^n} p^+ \int_{-\infty}^{\infty} d^{n-2}k_{\perp} dk^- dk^+ \frac{2p^+ k^- + \dots}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^+}{p^+}\right) \frac{1}{p^+}$$



Close look ...

 $\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{q}^{2}+i\varepsilon)}$ Term:

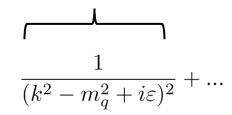
Cancellation of gluon propagator:

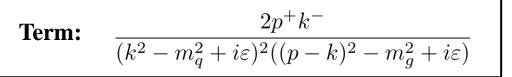
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

$$\frac{1}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} + \dots$$

Singular term

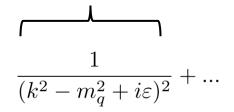


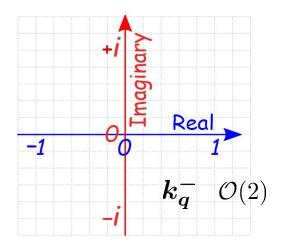


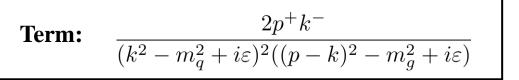
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

$$\frac{1}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} + \dots$$





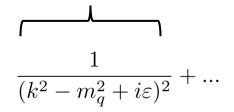


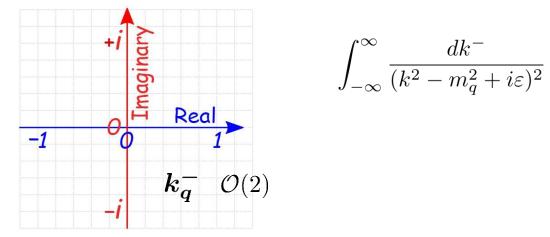
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

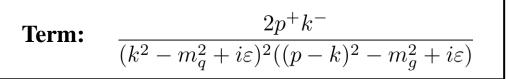
$$\frac{1}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} + \dots$$

Singular term





$$\int_{-\infty}^{\infty} \frac{dk^{-}}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}}$$

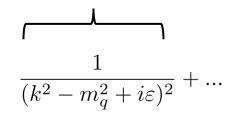


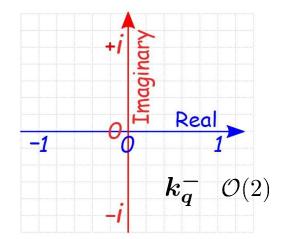
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

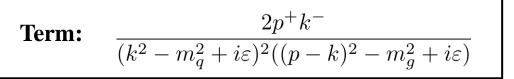
$$\frac{1}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} + \dots$$

Singular term





$$\int_{-\infty}^{\infty} \frac{dk^{-}}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} = \begin{cases} \mathbf{k}^{+} \neq \mathbf{0} : & \int_{-\infty}^{\infty} \frac{dk^{-}}{(2k^{+}k^{-} - k_{\perp}^{2} - m_{q}^{2} + i\varepsilon)^{2}} = 0 \end{cases}$$

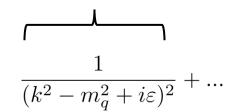


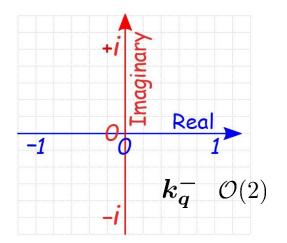
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{q}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

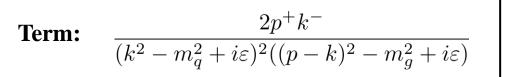
$$\frac{2p^{+}k^{-}}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}((p-k)^{2} - m_{g}^{2} + i\varepsilon)} \xrightarrow{1} \frac{1}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} + \dots$$

Singular term





$$\int_{-\infty}^{\infty} \frac{dk^{-}}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} = \begin{cases} \mathbf{k}^{+} \neq \mathbf{0} : & \int_{-\infty}^{\infty} \frac{dk^{-}}{(2k^{+}k^{-} - k_{\perp}^{2} - m_{q}^{2} + i\varepsilon)^{2}} = 0 \\ \mathbf{k}^{+} = \mathbf{0} : & \int_{-\infty}^{\infty} \frac{dk^{-}}{(k_{\perp}^{2} + m_{q}^{2} - i\varepsilon)^{2}} = \text{linear divergence} \end{cases}$$

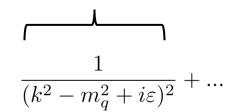


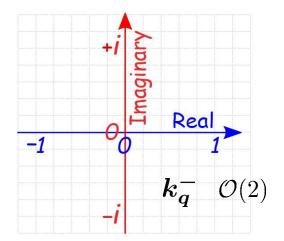
$$\frac{2p^{+}k^{-}}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{q}^{2}+i\varepsilon)}$$

$$k^{-} = -\frac{(p-k)^{2} - m_{g}^{2}}{2(1-x)p^{+}} - \frac{(k_{\perp}^{2} + m_{g}^{2})}{2(1-x)p^{+}} + \frac{m_{q}^{2}}{2p^{+}}$$

$$\frac{1}{(k^{2} - m_{g}^{2} + i\varepsilon)^{2}} + \dots$$

Singular term



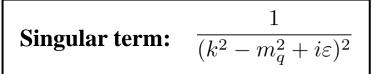


$$\int_{-\infty}^{\infty} \frac{dk^{-}}{(k^{2} - m_{q}^{2} + i\varepsilon)^{2}} = \begin{cases} \mathbf{k}^{+} \neq \mathbf{0} : & \int_{-\infty}^{\infty} \frac{dk^{-}}{(2k^{+}k^{-} - k_{\perp}^{2} - m_{q}^{2} + i\varepsilon)^{2}} = 0 \\ \mathbf{k}^{+} = \mathbf{0} : & \int_{-\infty}^{\infty} \frac{dk^{-}}{(k_{\perp}^{2} + m_{q}^{2} - i\varepsilon)^{2}} = \text{linear divergence} \end{cases}$$

$$\therefore \int_{-\infty}^{\infty} \frac{dk^-}{(k^2 - m_q^2 + i\varepsilon)^2} = \frac{i\pi}{k_\perp^2 + m_q^2} \, \delta(k^+)$$
 Zero modes

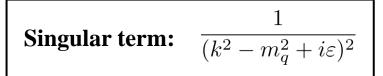
Singular term:
$$\frac{1}{(k^2 - m_q^2 + i\varepsilon)^2}$$

iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)}$

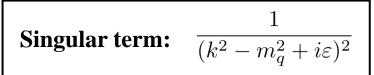


iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)}$

i.
$$m_q \neq 0$$

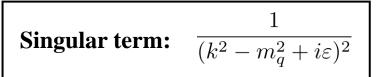


iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(\mathbf{s})}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)} \propto \epsilon_{\mathrm{UV}}$



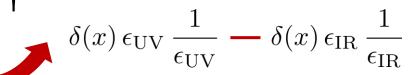
iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)}$

i.
$$m_q \neq 0$$
 $g_{T(\mathbf{s})}^{(1a)}|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$



iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + \mu_q^2)}$

i.
$$m_q \neq 0$$
 $g_{T(\mathbf{s})}^{(1a)}|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$



ii.
$$\epsilon_{
m IR}$$

Singular term: $\frac{1}{(k^2 - m_q^2 + i\varepsilon)^2}$

iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(\mathbf{s})}^{(1a)}(x) = -\alpha_s C_F \delta(x) \left(4-n\right) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + \mu_q^2)}$

i.
$$m_q \neq 0$$

$$g_{T(\mathrm{s})}^{(1a)}\big|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi}\delta(x)$$
 ii. ϵ_{IR}
$$g_{T(\mathrm{s})}^{(1a)}\big|_{\epsilon_{\mathrm{IR}}} = 0$$

• IR dependence of zero modes

Singular term:
$$\frac{1}{(k^2 - m_q^2 + i\varepsilon)^2}$$

iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)}$

i. $m_q \neq 0$	$g_{T(s)}^{(1a)} _{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$
ii. $\epsilon_{ m IR}$	$g_{T(\mathbf{s})}^{(1a)}\big _{\epsilon_{\mathrm{IR}}} = 0$
iii. $m_g eq 0$	

• IR dependence of zero modes

Singular term:
$$\frac{1}{(k^2 - m_q^2 + i\varepsilon)^2}$$

iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_q^2)}$

i. $m_q \neq 0$	$g_{T(s)}^{(1a)} _{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$
ii. $\epsilon_{ m IR}$	$g_{T(\mathbf{s})}^{(1a)}\big _{\epsilon_{\mathrm{IR}}} = 0$
iii. $m_g eq 0$	

- IR dependence of zero modes
- Working with $m_g \neq 0$ is an issue at twist-3: IR divergence unattended for the singular term! First time at twist-3!

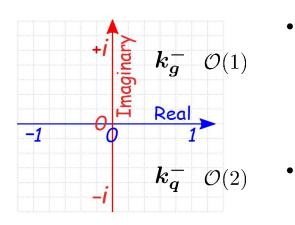
Singular term:
$$\frac{1}{(k^2 - m_q^2 + i\varepsilon)^2}$$

iii. Result after
$$\int d^{n-2}k_{\perp}$$
: $g_{T(s)}^{(1a)}(x) = -\alpha_s C_F \delta(x) (4-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \frac{1}{(k_{\perp}^2 + m_g^2)}$

i. $m_q \neq 0$	$g_{T(\mathbf{s})}^{(1a)}\big _{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$
ii. $\epsilon_{ m IR}$	$g_{T(\mathbf{s})}^{(1a)}\big _{\epsilon_{\mathrm{IR}}} = 0$
iii. $m_g \neq 0$	$g_{T(\mathbf{s})}^{(1a)}(x) = \begin{cases} g_{T(\mathbf{s})}^{(1a)}(x) \big _{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \\ g_{T(\mathbf{s})}^{(1a)}(x) \big _{\epsilon_{\mathrm{IR}}} = 0 \end{cases}$

- IR dependence of zero modes
- Working with $m_g \neq 0$ is an issue at twist-3: IR divergence unattended for the singular term! First time at twist-3!
- Consider two practical options:
- 1. Retain m_q in $g_{T(s)}$
- **2.** Do DR for $\int_0 d^{n-2}k_{\perp}$ in $g_{T(s)}$
- 3. Work with $m_g \neq 0$ for $g_{T(c)}$

Results for canonical part:



Starting expression

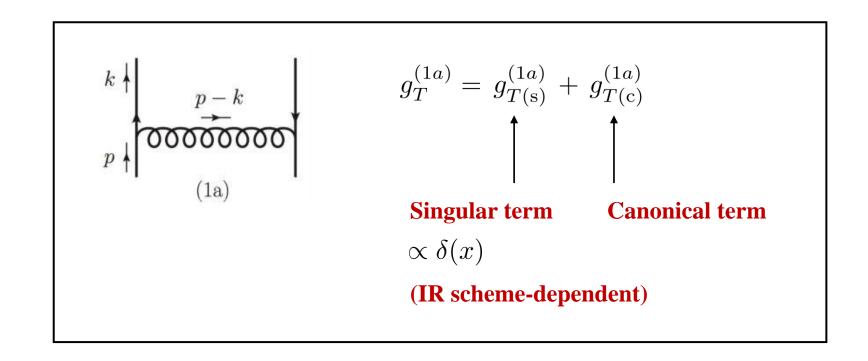
$$g_{T(c)}(x) \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^-}{2\pi} \frac{2k^2 + 2k_{\perp}^2 + 2m_q^2 - (4-n)m_g^2}{(k^2 - m_q^2 + i\varepsilon)^2((p-k)^2 - m_q^2 + i\varepsilon)}$$

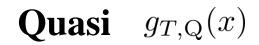
• k^- poles on both sides of real axis: usual machinery for twist-2

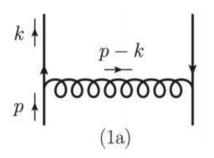
$$\begin{aligned} \textbf{i.} \quad m_{q} \neq 0 \qquad & g_{T(c)}^{(1a)}(x) \Big|_{m_{q}} = \frac{\alpha_{s}C_{F}}{2\pi} \left(x \, \mathcal{P}_{\text{UV}} + x \ln \frac{\mu_{\text{UV}}^{2}}{(1-x)^{2} m_{q}^{2}} + \frac{x^{2} - 2x - 1}{1-x} \right) \\ \textbf{ii.} \quad m_{g} \neq 0 \qquad & g_{T(c)}^{(1a)}(x) \Big|_{m_{g}} = \frac{\alpha_{s}C_{F}}{2\pi} \left(x \, \mathcal{P}_{\text{UV}} + x \ln \frac{\mu_{\text{UV}}^{2}}{x m_{g}^{2}} + (1-x) \right) \\ \textbf{iii.} \quad \epsilon_{\text{IR}} \qquad & g_{T(c)}^{(1a)}(x) \Big|_{\epsilon_{\text{IR}}} = \frac{\alpha_{s}C_{F}}{2\pi} \left(x \, (\mathcal{P}_{\text{UV}} - \mathcal{P}_{\text{IR}}) + x \ln \frac{\mu_{\text{UV}}^{2}}{\mu_{\text{IR}}^{2}} \right) \end{aligned}$$

$$\mathcal{P}_{\mathrm{UV/IR}} = \frac{1}{\epsilon_{\mathrm{UV/IR}}} + \ln 4\pi - \gamma_E$$

General structure for the ladder-diagram result





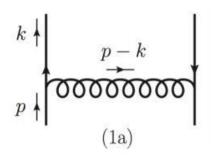


$$\begin{array}{c|c}
 & k \downarrow \\
\hline
p - k \\
\hline
p \downarrow \\
\hline
\end{array}$$

$$\begin{array}{c|c}
 & m_q \\
\hline
p^3 g_{T,Q}^{(1a)}(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr} \left[u \overline{u} \gamma^{\nu} \left(\cancel{k} + m_q \right) \gamma^i \gamma_5 \left(\cancel{k} + m_q \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta \left(x - \frac{\cancel{k^3}}{p^3} \right) \frac{1}{p^3}
\end{array}$$

$$\begin{array}{c|c}
 & \frac{m_q}{p^3} g_{T,Q}^{(1a)}(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr} \left[u \overline{u} \gamma^{\nu} \left(\cancel{k} + m_q \right) \gamma^i \gamma_5 \left(\cancel{k} + m_q \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta \left(x - \frac{\cancel{k^3}}{p^3} \right) \frac{1}{p^3}
\end{array}$$

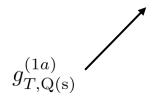
$$\begin{array}{c|c}
 & \text{Tr} \left[u \overline{u} \gamma^{\nu} \left(\cancel{k} + m_q \right) \gamma^i \gamma_5 \left(\cancel{k} + m_q \right) \gamma^{\mu} \right] \delta \left(x - \frac{\cancel{k^3}}{p^3} \right) \frac{1}{p^3}$$



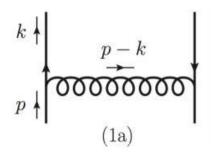
$$\frac{p-k}{p^{3}}g_{T,Q}^{(1a)}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{4}\int_{-\infty}^{\infty} \frac{d^{n}k}{(2\pi)^{n}} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\,(\not k+m_{q})\,\gamma^{i}\gamma_{5}\,(\not k+m_{q})\,\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}\,\delta\left(x-\frac{k^{3}}{p^{3}}\right)\frac{1}{p^{3}}$$

$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2}$$

$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2} + \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{2k^2 + 2k_{\perp}^2 + 2m_q^2 - (4-n)m_g^2}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)}$$



$$g_{T,Q(c)}^{(1a)}$$

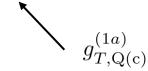


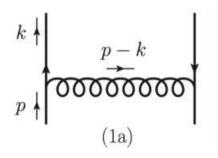
$$\frac{p-k}{p^{3}}g_{T,Q}^{(1a)}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{4}\int_{-\infty}^{\infty}\frac{d^{n}k}{(2\pi)^{n}}\frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\,(\not k+m_{q})\,\gamma^{i}\gamma_{5}\,(\not k+m_{q})\,\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}\,\delta\left(x-\frac{k^{3}}{p^{3}}\right)\frac{1}{p^{3}}$$

$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \left(\frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2} \right) +$$

$$\frac{(4-n)}{(k_{\perp}^2 + x^2 p_3^2 + m_q^2)^{3/2}}$$

$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \left(\frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2} \right) + \left[\alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{2k^2 + 2k_{\perp}^2 + 2m_q^2 - (4-n)m_g^2}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)} \right]$$





$$\frac{p-k}{p^{3}}g_{T,Q}^{(1a)}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{4}\int_{-\infty}^{\infty}\frac{d^{n}k}{(2\pi)^{n}}\frac{\mathrm{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(\cancel{k}+m_{q}\right)\gamma^{i}\gamma_{5}\left(\cancel{k}+m_{q}\right)\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}\,\delta\left(x-\frac{k^{3}}{p^{3}}\right)\frac{1}{p^{3}}$$

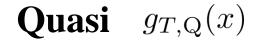
$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \left(\frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2} \right) +$$

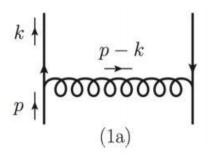
$$g_{T,Q} \approx \alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \left(\int \frac{dk^0}{2\pi} \frac{(4-n)}{(k^2 - m_q^2 + i\varepsilon)^2} \right) + \left[\alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{2k^2 + 2k_{\perp}^2 + 2m_q^2 - (4-n)m_g^2}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)} \right]$$

$$g_{T,\mathrm{Q(s)}}^{(1a)}$$

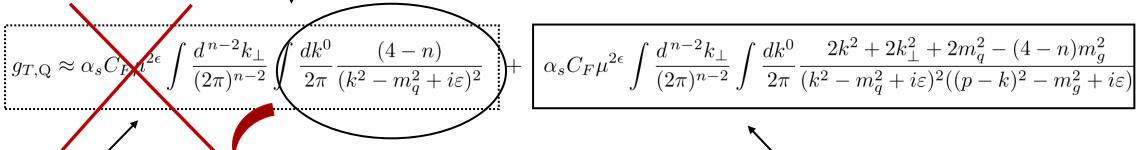
$$\frac{(4-n)}{(k_{\perp}^2 + x^2 p_3^2 + m_q^2)^{3/2}} \propto \epsilon$$

$$g_{T,Q(c)}^{(1a)}$$





$$\frac{p-k}{p^{3}}g_{T,Q}^{(1a)}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{4}\int_{-\infty}^{\infty} \frac{d^{n}k}{(2\pi)^{n}} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\,(\not k+m_{q})\,\gamma^{i}\gamma_{5}\,(\not k+m_{q})\,\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{g}^{2}+i\varepsilon)}\,\delta\left(x-\frac{k^{3}}{p^{3}}\right)\frac{1}{p^{3}}$$



$$\alpha_s C_F \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{2k^2 + 2k_{\perp}^2 + 2m_q^2 - (4-n)m_g^2}{(k^2 - m_q^2 + i\varepsilon)^2 ((p-k)^2 - m_g^2 + i\varepsilon)}$$

$$\frac{(4-n)}{(k_{\perp}^2 + x^2 p_3^2 + m_q^2)^{3/2}} \propto \epsilon$$

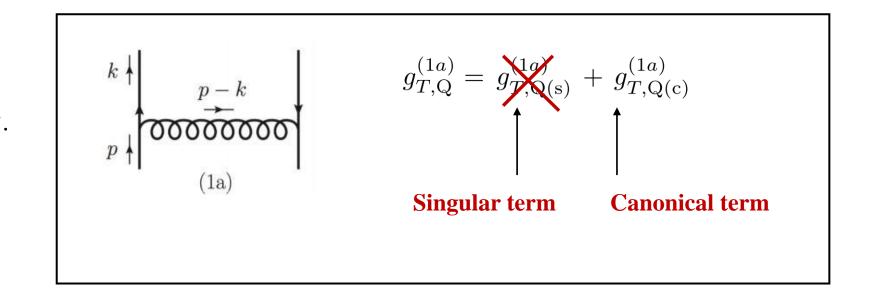
$$g_{T,Q(c)}^{(1a)}$$

Singular part drops out!

i. $m_q \neq 0$	$\left. \left. \left. \left. \left. g_{T,Q(c)}^{(1a)}(x) \right _{m_q} \right. \right. = \left. \left. \frac{\alpha_s C_F}{2\pi} \left\{ \begin{matrix} x \ln \frac{x}{x-1} - 1 & x > 1 \\ x \ln \frac{4xp_3^2}{(1-x)m_q^2} + 1 - 2x + \frac{2}{x-1} & 0 < x < 1 \\ x \ln \frac{x-1}{x} + 1 & x < 0 \end{matrix} \right. \right. \right.$
ii. $m_g \neq 0$	$\left. \left. \left. \left. g_{T,Q(c)}^{(1a)}(x) \right _{m_g} \right. \right. = \left. \left. \frac{\alpha_s C_F}{2\pi} \left\{ \begin{matrix} x \ln \frac{x}{x-1} - 1 & x > 1 \\ x \ln \frac{4(1-x)p_3^2}{m_g^2} + 1 - 2x & 0 < x < 1 \\ x \ln \frac{x-1}{x} + 1 & x < 0 \end{matrix} \right. \right.$
iii. $\epsilon_{ m IR}$	$g_{T,Q(c)}^{(1a)}(x)\Big _{\epsilon_{IR}} = \frac{\alpha_s C_F}{2\pi} \begin{cases} x \ln \frac{x}{x-1} - 1 & x > 1\\ x \ln \frac{4x(1-x)p_3^2}{\mu_{IR}^2} - x - x\mathcal{P}_{IR} & 0 < x < 1\\ x \ln \frac{x-1}{x} + 1 & x < 0 \end{cases}$

Quasi $g_{T,Q}(x)$

General structure for the ladder-diagram result



Coefficient of zero-modes IR finite

$$g_{T(s)}^{(1a)}(x) = \begin{cases} g_{T(s)}^{(1a)}(x) \big|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \\ g_{T(s)}^{(1a)}(x) \big|_{\epsilon_{IR}} = 0 \end{cases}$$

$$g_{T(c)}^{(1a)}(x)\Big|_{m_g} = \frac{\alpha_s C_F}{2\pi} \left(x \mathcal{P}_{UV} + x \ln \frac{\mu_{UV}^2}{x m_g^2} \right) (1-x) \right) \qquad g_{T,Q(c)}^{(1a)}(x)\Big|_{m_g} = \frac{\alpha_s C_F}{2\pi} \left(x \ln \frac{x}{x-1} - 1 & x > 1 \\ x \ln \frac{4(1-x)p_3^2}{m_g^2} + 1 - 2x & 0 < x < 1 \\ x \ln \frac{x-1}{x} + 1 & x < 0 \right)$$

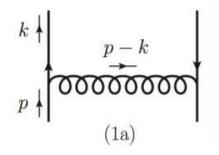
$$g_{T(c)}^{(1a)}(x)\Big|_{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \left(x \, \mathcal{P}_{\mathrm{UV}} \left(-x \, \mathcal{P}_{\mathrm{IR}} \right) + x \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \qquad g_{T,\mathrm{Q(c)}}^{(1a)}(x)\Big|_{\epsilon_{\mathrm{IR}}} \quad = \quad \frac{\alpha_s C_F}{2\pi} \begin{cases} x \ln \frac{x}{x-1} - 1 & x > 1 \\ x \ln \frac{4x(1-x)p_3^2}{\mu_{\mathrm{IR}}^2} - x \left(-x \, \mathcal{P}_{\mathrm{IR}} \right) & 0 < x < 1 \\ x \ln \frac{x-1}{x} + 1 & x \leq_{\$} 0 \end{cases}$$

• Other diagrams can be calculated just like in the twist-2 case

Diagram by diagram the IR poles exactly match between $g_T(x)$ & $g_{T,Q}(x)$: heart of quasi-PDF approach

- Other diagrams can be calculated just like in the twist-2 case
- Diagram by diagram the IR poles exactly match between $g_T(x)$ & $g_{T,Q}(x)$: heart of quasi-PDF approach
- Matching kernel can be extracted diagram by diagram

Example:



$$C^{(1a)}(x) = \delta(1-x) + \tilde{q}^{(1a)}(x) - q^{(1a)}(x)$$

$$= \delta(1-x) + C^{(1a)}_{(s)}(x) + C^{(1a)}_{(c)}(x)$$

- Other diagrams can be calculated just like in the twist-2 case
- Diagram by diagram the IR poles exactly match between $g_T(x)$ & $g_{T,Q}(x)$: heart of quasi-PDF approach
- Matching kernel can be extracted diagram by diagram

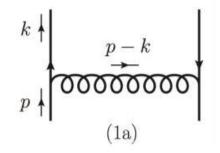


Example:
$$C^{(1a)}(x) = \delta(1-x) + \tilde{q}^{(1a)}(x) - q^{(1a)}(x) = \delta(1-x) + C^{(1a)}_{(s)}(x) + C^{(1a)}_{(c)}(x)$$

Canonical part of kernel independent of IR regulator (like twist-2)

$$C_{(c)}^{(1a)}(x)\Big|_{m_q, m_g, \epsilon_{IR}} = \frac{\alpha_s C_F}{2\pi} \begin{cases} x \ln \frac{x}{x-1} - 1 & x > 1\\ x \ln \frac{4x(1-x)p_3^2}{\mu^2} - x & 0 < x < 1\\ x \ln \frac{x-1}{x} + 1 & x < 0 \end{cases}$$

- Other diagrams can be calculated just like in the twist-2 case
- Diagram by diagram the IR poles exactly match between $g_T(x)$ & $g_{T,Q}(x)$: heart of quasi-PDF approach
- Matching kernel can be extracted diagram by diagram



Example:
$$k \nmid p-k$$
 $C^{(1a)}(x) = \delta(1-x) + \tilde{q}^{(1a)}(x) - q^{(1a)}(x)$ $= \delta(1-x) + C^{(1a)}_{(s)}(x) + C^{(1a)}_{(c)}(x)$

Canonical part of kernel independent of IR regulator (like twist-2)

$$C_{(c)}^{(1a)}(x)\Big|_{m_q,m_g,\epsilon_{IR}} = \frac{\alpha_s C_F}{2\pi} \begin{cases} x \ln \frac{x}{x-1} - 1 & x > 1 \\ x \ln \frac{4x(1-x)p_3^2}{\mu^2} - x & 0 < x < 1 \\ x \ln \frac{x-1}{x} + 1 & x < 0 \end{cases}$$

$$C_{(s)}^{(1a)}(x)\Big|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x)$$

$$C_{(s)}^{(1a)}(x)\Big|_{\epsilon_{IR}} = 0$$

Singular part of kernel: dependent on IR regulator (new at twist-3)

$$C_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} C_{(\mathrm{s})}^{(1a)}(x) \big|_{m_q \neq 0} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \\ \\ C_{(\mathrm{s})}^{(1a)}(x) \big|_{\epsilon_{\mathrm{IR}}} = 0 \end{cases}$$

Matching in $\overline{\rm MS}$

$$\mathbf{DR} \quad \stackrel{\frown}{\longrightarrow} \left[C_{\overline{\mathrm{MS}}} \left(\xi, \frac{\mu^2}{p_3^2} \right) \Big|_{\epsilon_{\mathrm{IR}}} \right] = \delta(1 - \xi) + \frac{\alpha_s C_F}{2\pi} \left\{ \right.$$

$$C_{\overline{\rm MS}}\left(\xi,\frac{\cdot}{p_{3}^{2}}\right)\Big|_{\epsilon_{\rm IR}} = \delta(1-\xi)$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left[\frac{-\xi^{2}+2\xi+1}{1-\xi} \ln \frac{\xi}{\xi-1} + \frac{\xi}{1-\xi} + \frac{3}{2\xi}\right]_{+} - \frac{3}{2\xi} & \xi > 1 \\ \left[\frac{-\xi^{2}+2\xi+1}{1-\xi} \ln \frac{4\xi(1-\xi)p_{3}^{2}}{\mu^{2}} + \frac{\xi^{2}-\xi-1}{1-\xi}\right]_{+} & 0 < \xi < 1 \\ \left[\frac{-\xi^{2}+2\xi+1}{1-\xi} \ln \frac{\xi-1}{\xi} - \frac{\xi}{1-\xi} + \frac{3}{2(1-\xi)}\right]_{+} - \frac{3}{2(1-\xi)} & \xi < 0 \end{cases}$$

$$\alpha_{s}C_{F} \approx \omega_{s} \left(\frac{1}{2} - \frac{3}{2} + \frac{3}{2(1-\xi)}\right)_{+} - \frac{3}{2(1-\xi)} + \frac{3}{2(1-\xi)} +$$

If DR to singular terms for
$$m_g \neq 0$$
:
$$C_{\overline{\rm MS}}\Big|_{m_g} = C_{\overline{\rm MS}}\Big|_{\epsilon_{\rm IR}}$$

$$m_{q} \neq 0 \longrightarrow \begin{bmatrix} C_{\overline{\mathrm{MS}}} \left(\xi, \frac{\mu^{2}}{p_{3}^{2}} \right) \Big|_{m_{q}} &= \delta(1 - \xi) \\ & + \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left[\frac{-\xi^{2} + 2\xi + 1}{1 - \xi} \ln \frac{\xi}{\xi - 1} + \frac{\xi}{1 - \xi} + \frac{3}{2\xi} \right]_{+} - \frac{3}{2\xi} & \xi > 1 \\ \left[\frac{\delta(\xi)}{\xi} + \frac{-\xi^{2} + 2\xi + 1}{1 - \xi} \ln \frac{4\xi(1 - \xi)p_{3}^{2}}{\mu^{2}} + \frac{\xi^{2} - \xi - 1}{1 - \xi} \right]_{+} & 0 < \xi < 1 \\ \left[\frac{-\xi^{2} + 2\xi + 1}{1 - \xi} \ln \frac{\xi - 1}{\xi} - \frac{\xi}{1 - \xi} + \frac{3}{2(1 - \xi)} \right]_{+} - \frac{3}{2(1 - \xi)} & \xi < 0 \end{cases}$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi} \delta(1 - \xi) \left(\frac{1}{2} + \frac{3}{2} \ln \frac{\mu^{2}}{4p_{3}^{2}} \right)$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi} \delta(1 - \xi) \left(\frac{1}{2} + \frac{3}{2} \ln \frac{\mu^{2}}{4p_{3}^{2}} \right)$$

 $+ \frac{\alpha_s C_F}{2\pi} \delta(1-\xi) \left(-\frac{1}{2} + \frac{3}{2} \ln \frac{\mu^2}{4n^2} \right)$

If
$$m_q \neq 0$$
 to singular terms for $m_g \neq 0$:
$$C_{\overline{\rm MS}}\Big|_{m_g} = C_{\overline{\rm MS}}\Big|_{m_q}$$

Matching in $\overline{\mathrm{MS}}$

$$C_{\overline{\rm MS}}\left(\xi,\frac{\mu^{2}}{p_{3}^{2}}\right)\Big|_{\epsilon_{\rm IR}} = \delta(1-\xi)$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left[\frac{-\xi^{2}+2\xi+1}{1-\xi}\ln\frac{\xi}{\xi-1} + \frac{\xi}{1-\xi} + \frac{3}{2\xi}\right]_{+} - \frac{3}{2\xi} \\ \left[\frac{-\xi^{2}+2\xi+1}{1-\xi}\ln\frac{4\xi(1-\xi)p_{3}^{2}}{\mu^{2}} + \frac{\xi^{2}-\xi-1}{1-\xi}\right]_{+} & 0 < \xi < 1 \\ \left[\frac{-\xi^{2}+2\xi+1}{1-\xi}\ln\frac{\xi-1}{\mu^{2}} - \frac{\xi}{1-\xi} + \frac{3}{2(1-\xi)}\right]_{+} - \frac{3}{2(1-\xi)} & \xi < 0 \end{cases}$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left(-\frac{1}{2} + \frac{3}{2}\ln\frac{\mu^{2}}{4p_{3}^{2}}\right)$$

Problems with $\overline{\mathrm{MS}}$:

- i. Convolution integrals are divergent : $\frac{3}{2} \ln \xi$ divergence
- ii. Mismatch in norm: $\int_{-\infty}^{\infty} \tilde{q}^{\overline{\mathrm{MS}}}(x,\mu,p^3) \neq \int_{0}^{1} q^{\overline{\mathrm{MS}}}(x,\mu)$

Matching in $\overline{\mathrm{MS}}$

Problems with $\overline{\mathrm{MS}}$:

- i. Convolution integrals are divergent : $\frac{3}{2} \ln \xi$ divergence
- ii. Mismatch in norm: $\int_{-\infty}^{\infty} \tilde{q}^{\overline{\rm MS}}(x,\mu,p^3) \neq \int_{0}^{1} q^{\overline{\rm MS}}(x,\mu)$

Introduce $\overline{\rm MMS}$ scheme: Alexandrou et. al. (arXiv: 1902.00587)

- i. Subtract divergence outside physical region
- ii. Impose: $\int_{-\infty}^{\infty} \tilde{q}^{M\overline{MS}}(x,\mu,p^3) = \int_{0}^{1} q^{\overline{MS}}(x,\mu)$

Matching in \overline{MMS}

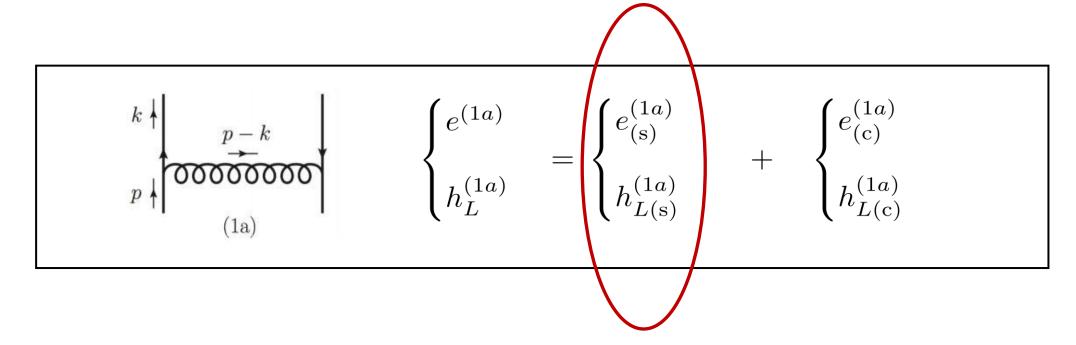
Matching implemented in lattice QCD (S.B, Cichy, Constantinou, Metz, Scapellato, Steffens: arXiv:2004.04130)

Results are encouraging

See Krzysztof's talk today for lattice results of $g_T(x)$

$$\frac{\text{Case 2:}}{h_L} \begin{cases} e \\ h_{L,Q} \end{cases}$$

General structure for the ladder-diagram result



Trouble-maker term for both light-cone & quasi-PDF results

Light-cone results

Singular term:
$$e_{(s)}^{(1a)}(x) = -h_{L(s)}^{(1a)}(x) = -\alpha_s C_F \, \delta(x) \, (2-n) \, \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \, \frac{1}{(k_{\perp}^2 + m_q^2)}$$

Light-cone regults

$$-2(1-\epsilon)$$

$$-2(1-\epsilon)$$
 Singular term: $e_{(\mathrm{s})}^{(1a)}(x) = -h_{L(\mathrm{s})}^{(1a)}(x) = -\alpha_s C_F \, \delta(x) (2-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_\perp}{(2\pi)^{n-2}} \, \frac{1}{(k_\perp^2 + m_q^2)}$

Light-cone regults

$$-2(1-\epsilon)$$

Singular term:
$$e_{(s)}^{(1a)}(x) = -h_{L(s)}^{(1a)}(x) = -\alpha_s C_F \, \delta(x) (2-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \, \frac{1}{(k_{\perp}^2 + m_q^2)}$$

$$\begin{aligned} \textbf{ii.} \quad m_{q} \neq 0 \qquad & e_{(\mathrm{s})}^{(1a)}(x)\big|_{m_{q}} = \frac{\alpha_{s}C_{F}}{2\pi} \delta(\boldsymbol{x}) \bigg(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^{2}}{m_{q}^{2}} - 1 \bigg) \\ \textbf{iii.} \quad \epsilon_{\mathrm{IR}} \qquad & e_{(\mathrm{s})}^{(1a)}(x)\big|_{\epsilon_{\mathrm{IR}}} = \frac{\alpha_{s}C_{F}}{2\pi} \delta(\boldsymbol{x}) \bigg(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln \frac{\mu_{\mathrm{UV}}^{2}}{\mu_{\mathrm{IR}}^{2}} \bigg) \\ \textbf{iii.} \quad m_{g} \neq 0 \qquad & e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x)\big|_{m_{q}} = \frac{\alpha_{s}C_{F}}{2\pi} \delta(\boldsymbol{x}) \bigg(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^{2}}{m_{q}^{2}} - 1 \bigg) \\ e_{(\mathrm{s})}^{(1a)}(x)\big|_{\epsilon_{\mathrm{IR}}} = \frac{\alpha_{s}C_{F}}{2\pi} \delta(\boldsymbol{x}) \bigg(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln \frac{\mu_{\mathrm{UV}}^{2}}{\mu_{\mathrm{IR}}^{2}} \bigg) \end{cases} \end{aligned}$$

Zero modes are unavoidable

Light-cone regults

$$-2(1-\epsilon)$$

$$-2(1-\epsilon)$$
 Singular term: $e_{(\mathrm{s})}^{(1a)}(x) = -h_{L(\mathrm{s})}^{(1a)}(x) = -\alpha_s C_F \, \delta(x) (2-n) \mu^{2\epsilon} \int \frac{d^{n-2}k_\perp}{(2\pi)^{n-2}} \, \frac{1}{(k_\perp^2 + m_q^2)}$

i. $m_q \neq 0$	$e_{(\mathrm{s})}^{(1a)}(x)\big _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(\mathbf{x}) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right)$
ii. $\epsilon_{ m IR}$	$e_{(\mathrm{s})}^{(1a)}(x)\big _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2}\right)$
iii. $m_g \neq 0$	$e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x) \big _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(\mathbf{x}) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right) \\ e_{(\mathrm{s})}^{(1a)}(x) \big _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(\mathbf{x}) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \end{cases}$

- Zero modes are unavoidable
- **IR-dependent prefactors of the** zero modes

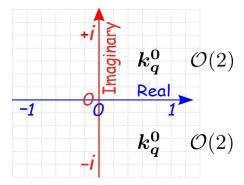
Quasi results

Singular term:
$$e_{\mathrm{Q(s)}}(x) = -h_{L,\mathrm{Q(s)}}(x) \approx \alpha_s C_F \, p^3 \, \mu^{2\epsilon} \int \frac{d^{n-2}k_\perp}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(2-n)}{(k^2-m_q^2+i\varepsilon)^2}$$

Quasi results

Singular term:
$$e_{Q(s)}(x) = -h_{L,Q(s)}(x) \approx \alpha_s C_F p^3 \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(2-n)}{(k^2 - m_q^2 + i\varepsilon)^2}$$

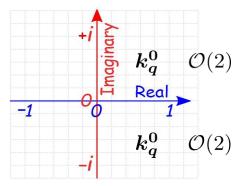
i. $\int dk^0$



$$\int_{-\infty}^{\infty} \frac{dk^0}{(k^2 - m_q^2 + i\varepsilon)^2} \approx \frac{1}{(k_{\perp}^2 + x^2 p_3^2 + m_q^2)^{3/2}}$$

Quasi results

Singular term:
$$e_{Q(s)}(x) = -h_{L,Q(s)}(x) \approx \alpha_s C_F p^3 \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(2-n)^{n-2}}{(k^2 - m_q^2 + i\varepsilon)^2}$$



$$\int_{-\infty}^{\infty} \frac{dk^0}{(k^2 - m_q^2 + i\varepsilon)^2} \approx \frac{1}{(k_{\perp}^2 + x^2 p_3^2 + m_q^2)^{3/2}}$$

Singular term:
$$e_{Q(s)}(x) = -h_{L,Q(s)}(x) \approx \alpha_s C_F p^3 \mu^{2\epsilon} \int \frac{d^{n-2}k_{\perp}}{(2\pi)^{n-2}} \int \frac{dk^0}{2\pi} \frac{(2-n)}{(k^2-m_q^2+i\varepsilon)^2}$$

i. $\int dk^0$:

$$\int \frac{dk^0}{k_q^0} = \int \frac{dk^0}{(k^2-m_q^2+i\varepsilon)^2} e^{-\frac{1}{2\pi}} \frac{dk^0}{k_q^0} = \int \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(k_{\perp}^2+x^2p_3^2+m_q^2)} = \int \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} = \int \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} = \int \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^2} = \int \frac{dk^0}{(2\pi)^2} \frac{dk^0}{(2\pi)^$$

Light-cone PDF	Quasi-PDF
$\delta(x)$	$\frac{1}{ x } - \infty < x < \infty$

Light-cone PDF	Quasi-PDF
$e_{(s)}^{(1a)}(x) = \begin{cases} e_{(s)}^{(1a)}(x) _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\text{UV}} + \ln \frac{\mu_{\text{UV}}^2}{m_q^2} - 1 \right) \\ e_{(s)}^{(1a)}(x) _{\epsilon_{\text{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\text{UV}} - \mathcal{P}_{\text{IR}} + \ln \frac{\mu_{\text{UV}}^2}{\mu_{\text{IR}}^2} \right) \end{cases}$	$e_{\mathbf{Q(s)}}^{(1a)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{x} & x > 1\\ \frac{1}{x} & 0 < x < 1\\ -\frac{1}{x} & x < 0 \end{cases}$

Light-cone PDF	Quasi-PDF
$e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x) \big _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right) \\ e_{(\mathrm{s})}^{(1a)}(x) \big _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \end{cases}$	$e_{\mathbf{Q(s)}}^{(1a)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{x} & x > 1\\ \frac{1}{x} & 0 < x < 1\\ -\frac{1}{x} & x < 0 \end{cases}$

• Singular terms exhibit IR divergence: 1/x pole as $x \to 0$

Light-cone PDF	Quasi-PDF
$e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x) _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} \right) - 1 \right) \\ e_{(\mathrm{s})}^{(1a)}(x) _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} \right) \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \end{cases}$	$e_{\mathbf{Q(s)}}^{(1a)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{x} & x > 1\\ \frac{1}{x} & 0 < x < 1\\ -\frac{1}{x} & x < 0 \end{cases}$

• Singular terms exhibit IR divergence: 1/x pole as $x \to 0$

Light-cone PDF	Quasi-PDF
$e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x) _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} \right) - 1 \right) \\ e_{(\mathrm{s})}^{(1a)}(x) _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} \right) \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \end{cases}$	$e_{\mathbf{Q(s)}}^{(1a)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{x} & x > 1\\ \frac{1}{x} & 0 < x < 1\\ -\frac{1}{x} & x < 0 \end{cases}$

- Singular terms exhibit IR divergence: 1/x pole as $x \to 0$
- Mismatch in the IR behavior between the x dependent $e_{(s)}(x), h_{L(s)}(x)$ & $e_{Q(s)}(x), h_{L,Q(s)}(x)$
- Potential problem with matching

Comparison of singular terms

Light-cone PDF	Quasi-PDF
$e_{(\mathrm{s})}^{(1a)}(x) = \begin{cases} e_{(\mathrm{s})}^{(1a)}(x) \big _{m_q} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} \right) - 1 \right) \\ e_{(\mathrm{s})}^{(1a)}(x) \big _{\epsilon_{\mathrm{IR}}} = \frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} \right) \ln \frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2} \right) \end{cases}$	$e_{\mathbf{Q(s)}}^{(1a)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{x} & x > 1\\ \frac{1}{x} & 0 < x < 1\\ -\frac{1}{x} & x < 0 \end{cases}$

- Singular terms exhibit IR divergence: 1/x pole as $x \to 0$
- Mismatch in the IR behavior between the x dependent $e_{(s)}(x)$, $h_{L(s)}(x)$ & $e_{Q(s)}(x)$, $h_{L,Q(s)}(x)$
- Potential problem with matching
- Cross-check: agreement of norm

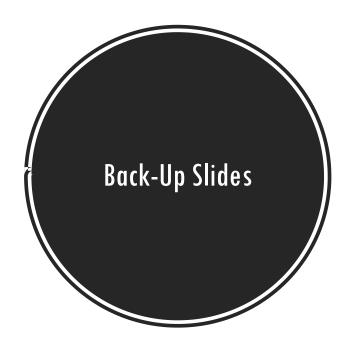
S.B., Cocuzza, Metz (arXiv: 1903.05721)

$$\int dx \, e_{Q(s)}(x) = \int dx \, e_{(s)}(x); \quad \int dx \, h_{L,Q(s)}(x) = \int dx \, h_{L(s)}(x)$$

Summary

- Calculated twist-3 light-cone PDFs $g_T(x)$, e(x) & $h_L(x)$ & their quasi versions in QTM
- Ladder diagram and zero modes:
 - Zero modes may or may not show up in light-cone $g_T(x)$ (IR scheme dependence)
 - Corresponding terms drop out in $g_{T,Q}(x)$
 - IR poles agree between $g_T(x)$ & $g_{T,Q}(x)$ for all diagrams: Matching is possible

 - Zero modes bound to show up in e(x) & $h_L(x)$: $e(x), h_L(x) \to \delta(x)$ Corresponding terms bound to show up in $e_Q(x)$ & $h_{L,Q}(x)$: $e_Q(x), h_{L,Q}(x) \to \frac{1}{|x|}$
 - Mismatch in the IR between e(x) & $e_Q(x)$ as well as $h_L(x)$ & $h_{L,Q}(x)$
 - Potential problem with matching



LC $g_T(x)$

$$g_{T}^{(1b)}(x)\Big|_{m_{g}} = \frac{\alpha_{s}C_{F}}{2\pi} \frac{1+x}{2(1-x)} \left(\mathcal{P}_{\text{UV}} + \ln\frac{\mu_{\text{UV}}^{2}}{xm_{g}^{2}}\right),$$

$$g_{T}^{(1b)}(x)\Big|_{m_{q}} = \frac{\alpha_{s}C_{F}}{2\pi} \frac{1+x}{2(1-x)} \left(\mathcal{P}_{\text{UV}} + \ln\frac{\mu_{\text{UV}}^{2}}{(1-x)^{2}m_{q}^{2}}\right),$$

$$g_{T}^{(1b)}(x)\Big|_{\epsilon_{\text{IR}}} = \frac{\alpha_{s}C_{F}}{2\pi} \frac{1+x}{2(1-x)} \left(\mathcal{P}_{\text{UV}} - \mathcal{P}_{\text{IR}} + \ln\frac{\mu_{\text{UV}}^{2}}{\mu_{\text{IR}}^{2}}\right).$$

$$\begin{split} g_T^{(2\mathrm{a})}\Big|_{m_g} &= \left.\frac{\partial \Sigma(p)}{\partial \not p}\right|_{m_g} = -\frac{\alpha_s C_F}{2\pi} \int_0^1 dy \, y \bigg(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{y m_g^2} - 1\bigg) \,, \\ g_T^{(2\mathrm{a})}\Big|_{m_q} &= \left.\frac{\partial \Sigma(p)}{\partial \not p}\right|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \int_0^1 dy \, (1-y) \bigg(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{(1-y)^2 m_q^2} - \frac{1+y^2}{(1-y)^2}\bigg) \,, \\ g_T^{(2\mathrm{a})}\Big|_{\epsilon_{\mathrm{IR}}} &= \left.\frac{\partial \Sigma(p)}{\partial \not p}\right|_{\epsilon_{\mathrm{IR}}} = -\frac{\alpha_s C_F}{2\pi} \int_0^1 dy \, y \bigg(\mathcal{P}_{\mathrm{UV}} - \mathcal{P}_{\mathrm{IR}} + \ln\frac{\mu_{\mathrm{UV}}^2}{\mu_{\mathrm{IR}}^2}\bigg) \end{split}$$

Quasi $g_{T,Q}(x)$

$$\begin{split} g_{T,\mathbf{Q}}^{(1\mathrm{b})}(x)\Big|_{m_g} &= \left.\frac{\alpha_s C_F}{2\pi} \, \frac{1+x}{2(1-x)} \right\{ \ln\frac{x}{x-1} & x>1 \\ \ln\frac{4(1-x)p_3^2}{m_g^2} & 0 < x < 1 \\ \ln\frac{x-1}{x} & x < 0 \,, \\ g_{T,\mathbf{Q}}^{(1\mathrm{b})}(x)\Big|_{m_q} &= \left.\frac{\alpha_s C_F}{2\pi} \, \frac{1+x}{2(1-x)} \right\{ \ln\frac{x}{x-1} & x > 1 \\ \ln\frac{4xp_3^2}{(1-x)m_q^2} & 0 < x < 1 \\ \ln\frac{x-1}{x} & x < 0 \,, \\ g_{T,\mathbf{Q}}^{(1\mathrm{b})}(x)\Big|_{\epsilon_{\mathrm{IR}}} &= \left.\frac{\alpha_s C_F}{2\pi} \, \frac{1+x}{2(1-x)} \right\{ \ln\frac{x}{x-1} & x < 0 \,, \\ \ln\frac{x-1}{x} & x < 0 \,, \\ \ln\frac{x}{x-1} & x < 0 \,, \\ \ln\frac{x}{x-1} & x < 0 \,, \\ \ln\frac{x}{x-1} & x < 0 \,. \\ \ln\frac{x}{x-1} & x < 0 \,. \\ \end{split}$$

$$g_{T,Q}^{(1d)}(x) = \frac{\alpha_s C_F}{2\pi} \begin{cases} \frac{1}{1-x} & x > 1\\ \frac{1}{x-1} & 0 < x < 1\\ \frac{1}{x-1} & x < 0 \end{cases}$$

$$\left.g_{T,\mathbf{Q}}^{(2\mathbf{a})}\right|_{m_g} = \frac{\partial \Sigma(p)}{\partial p}\Big|_{m_g} = -\frac{\alpha_s C_F}{2\pi}(1-\epsilon_{\mathbf{U}\mathbf{V}})C(\epsilon_{\mathbf{U}\mathbf{V}})\left(\frac{p^3}{\mu_{\mathbf{U}\mathbf{V}}}\right)^{-2\epsilon_{\mathbf{U}\mathbf{V}}} \int dy \begin{cases} y^{-2\epsilon_{\mathbf{U}\mathbf{V}}}\left(y\ln\frac{y}{y-1}-1\right) & y>1\\ y^{-2\epsilon_{\mathbf{U}\mathbf{V}}}\left(y\ln\frac{4(1-y)p_3^2}{m_g^2}+1-2y\right) & 0< y<1\\ (-y)^{-2\epsilon_{\mathbf{U}\mathbf{V}}}\left(y\ln\frac{y-1}{y}+1\right) & y<0\,, \end{cases}$$

$$g_{T,Q}^{(2a)}\big|_{m_q} = \frac{\partial \Sigma(p)}{\partial p}\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi}C(\epsilon_{\text{UV}}) \left(\frac{p^3}{\mu_{\text{UV}}}\right)^{-2\epsilon_{\text{UV}}} \int dy \begin{cases} (1-\epsilon_{\text{UV}})\,y^{-2\epsilon_{\text{UV}}} \left((1-y)\ln\frac{y}{y-1}+1\right) & y>1 \\ y^{-2\epsilon_{\text{UV}}} \left((1-\epsilon_{\text{UV}})(1-y)\ln\frac{4yp_3^2}{(1-y)m_q^2} - (1-\epsilon_{\text{UV}})\frac{2y^2-5y+1}{1-y} - \left(1-\frac{\epsilon_{\text{UV}}}{2}\right)\frac{4y}{1-y} \right) & 0 < y < 1 \\ -\left(1-\frac{\epsilon_{\text{UV}}}{2}\right)\frac{4y}{1-y}\right) & 0 < y < 1 \end{cases}$$

$$\left.g_{T,\mathbf{Q}}^{(2\mathbf{a})}\right|_{\epsilon_{\mathrm{IR}}} = \left.\frac{\partial \Sigma(p)}{\partial p}\right|_{\epsilon_{\mathrm{IR}}} = \left.-\frac{\alpha_s C_F}{2\pi}(1-\epsilon_{\mathrm{UV}})C(\epsilon_{\mathrm{UV}})\left(\frac{p^3}{\mu_{\mathrm{UV}}}\right)^{-2\epsilon_{\mathrm{UV}}}\int dy \begin{cases} y^{-2\epsilon_{\mathrm{UV}}}\left(y\ln\frac{y}{y-1}-1\right) & y>1\\ y^{-2\epsilon_{\mathrm{UV}}}\left(y\ln\frac{4y(1-y)p_3^2}{\mu_{\mathrm{IR}}^2}\right) & +1-y-y\mathcal{P}_{\mathrm{IR}} \end{pmatrix} & 0< y<1\\ \left.-y\right)^{-2\epsilon_{\mathrm{UV}}}\left(y\ln\frac{y-1}{y}+1\right) & y<0\,. \end{cases}$$