

Direct photon production in Au+Au collisions at 200GeV

Wenqing Fan BNL seminar March 2020

- A millionth of a second after the big bang
 - Extremely high temperature & density -> protons and neutrons "boiled" into a "soup" of quarks and gluons (Quark Gluon Plasma or QGP)

... To the little bang at RHIC

The main goal of Relativistic Heavy Ion Collider (RHIC) is to create, identify and study the QGP

... To the little bang at RHIC

The main goal of Relativistic Heavy Ion Collider (RHIC) is to create, identify and study the QGP

03/03/2020

Photons are a unique probe for QGP

Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point

03/03/2020

- Photons are a unique probe for QGP
 - * "Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs

03/03/2020

- Photons are a unique probe for QGP
 - * "Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs

80-90% of the photons are decay photons!

03/03/2020

- Photons are a unique probe for QGP
 - * "Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs

03/03/2020

- Photons are a unique probe for QGP
- * "Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point
- All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs

- Photons are a unique probe for QGP
 - * "Color blind" (do not experience strong interaction), provide a direct fingerprint of its creation point
 - All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs

03/03/2020

Anisotropic emission of direct photons

"Perfect fluid"

 $\frac{dN}{d(\phi - \Psi_{2,RP})} \propto 1 + 2v_2 \cos^2(\phi - \Psi_{2,RP}) + \dots$

final state anisotropy

Large yield: emissions from the early stage when temperature is high

Anisotropic emission of direct photons

Calorimeter

Conversion

"Perfect fluid"

initial state eccentricity

 $\frac{dN}{d(\phi - \Psi_{2,RP})} \propto 1 + 2v_2 \cos^2(\phi - \Psi_{2,RP}) + \dots$

pressure gradient

∧ p_y p,

final state anisotropy

Large yield: emissions from the early stage when temperature is high

Large v₂ observed!

Wenging Fan — BNL Seminar

۲**١**

2

3

p_ (GeV/c)

4

(b) v₂

Anisotropic emission of direct photons

"Perfect fluid"

initial state eccentricity

 $\frac{dN}{d(\phi - \Psi_{2,RP})} \propto 1 + 2v_2 \cos^2(\phi - \Psi_{2,RP}) + \dots$

pressure gradient

p_y p_x

final state anisotropy

Large yield: emissions from the early stage when temperature is high

Large v₂: emissions from the late stage when the collective flow is sufficiently built up

Challenging for current theoretical models to describe large yield and v₂ simultaneously!

Wenqing Fan — BNL Seminar

Calorimeter

Conversion

2

3

p_ (GeV/c)

4

Integrated low p_T direct photon yield — universal scaling

Integrate the low p_T direct photons and use dN_{ch}/dη to compare data from different beam energies, collisions species, and collision centralities

Integrated low p_T direct photon yield — universal scaling

Integrate the low p_T direct photons and use dN_{ch}/dη to compare data from different beam energies, collisions species, and collision centralities

Direct photon puzzle

- Experimental observations
 - Large yield of low p_T direct photons
 - Large anisotropic emission
 - Universal scaling with α ~5/4

Challenging to explain by thermal source

What is the main source for low p_T direct photons?

03/03/2020

Tension with STAR direct photon measurement

Towards precision measurement with the "Golden Dataset"

- Theoretically
 - Modification in thermal photon emission?
 - Modification in prompt photon emission?
 - Other sources of photons?
 (pre-equilibrium?
 hadronization? B field)
- Experimentally (to confirm and to study in more detail)
 - Experimental data needs more statistics
 - 2014 Au+Au dataset
 - More conversions at the PHENIX silicon vertex detector (VTX) (X/X₀~14%)

How to measure photons?

How to measure photons?

Acceptance: |η|<0.35, Δφ 2x90°

- Electromagnetic Calorimeter:
 - 2 PbGI: 0.8 % + 5.9 %/√E
 - 6 PbSc: 2.1 % + 8.1 %/√E

Measure photon via its energy deposit at calorimeter \bigcirc good resolution at high p_T

Over a contaminated by hadrons

Measure photon via conversions

$$\gamma \rightarrow e^+ + e^-$$

 \odot good resolution at low p_T

 \bigcirc good purity at low p_T after proper eID

- Drift Chambers (DC) δp/p = 0.7 % + 1.1%p
- Pad Chambers (PC) $\sigma = \pm 1.7 \text{ mm}$

Particle Identification:

- RICH e^{\pm}
- TOF East and TOF West:
 - σ_T ≅ 100ps
 - $\pi/K p_T < 2.5 \text{ GeV/c}$
 - $K/p p_T < 4.0 \text{ GeV/c}$
- EMCal timing:
 - σ_T ≅ 600ps

New conversion reconstruction algorithm

- Identify and reconstruct photons via external conversion to e⁺e⁻ pairs
 - Reconstruct conversion position using e⁺e⁻ pair and magnetic field map
 - Track conversions back to its conversion position and reconstruct photon momentum

New conversion reconstruction algorithm

- Identify and reconstruct photons via external conversion to e⁺e⁻ pairs
 - Reconstruct conversion position using e⁺e⁻ pair and magnetic field map
 - Track conversions back to its conversion position and reconstruct photon momentum

New conversion reconstruction algorithm

- Identify and reconstruct photons via external conversion to e⁺e⁻ pairs
 - Reconstruct conversion position using e⁺e⁻ pair and magnetic field map
 - Track conversions back to its conversion position and reconstruct photon momentum
 - Other systems: <u>Au+Au</u>, Cu+Au, ³He+Au, d+Au, p+Au, p+p

Double ratio tagging method (R_γ>1 indicating direct photon signal)

$$R_{\gamma} = \frac{\gamma^{incl}}{\gamma^{hadron}} \qquad \frac{\text{Inclusive} = \text{Direct} + \text{Hadronic decay}}{\gamma^{\text{direct}} = (R_{\gamma} - 1)\gamma^{\text{hadron}}}$$

Double ratio tagging method (R_γ>1 indicating direct photon signal)

$$R_{\gamma} = rac{\gamma^{incl}}{\gamma^{hadron}} = rac{rac{\gamma^{incl}}{\gamma^{\pi^0}}}{rac{\gamma^{hadron}}{\gamma^{\pi^0}}}$$

Detector efficiency and acceptance for the conversion photon cancel out in the ratio

$$N_{\gamma}^{incl} = \gamma^{incl} \cdot p_{conv} \cdot \epsilon_{e^+e^-} a_{e^+e^-}$$

$$N_{\gamma}^{\pi^{0}tag} = \gamma^{\pi^{0}} \cdot p_{conv} \cdot \epsilon_{e^{+}e^{-}} a_{e^{+}e^{-}} \cdot \langle \epsilon_{\gamma} f \rangle$$

$$rac{\gamma^{incl}}{\gamma^{\pi^0}} = \langle \epsilon f
angle rac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^0}}$$

~

Double ratio tagging method (R_γ>1 indicating direct photon signal)

$$R_{\gamma} = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\frac{\gamma^{incl}}{\gamma^{\pi^{0}}}}{\frac{\gamma^{hadron}}{\gamma^{\pi^{0}}}} = \frac{\langle \epsilon f \rangle \left(\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0}}}\right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^{0}}}\right)_{Sim}}$$

Detector efficiency and acceptance for the conversion photon cancel out in the ratio

 $N_{\gamma}^{incl} = \gamma^{incl} \cdot p_{eonv} \cdot \epsilon_{e^+e^-} a_{e^+e^-}$

$$N_{\gamma}^{\pi^{0}tag} = \gamma^{\pi^{0}} \cdot p_{conv} \cdot \epsilon_{e^{+}e^{-}} a_{e^{+}e^{-}} \cdot \langle \epsilon_{\gamma} f \rangle$$

$$\frac{\gamma^{incl}}{\gamma^{\pi^0}} = \langle \epsilon f \rangle \frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^0}}$$

Reduce

systematics!

• Double ratio tagging method ($R_v > 1$ indicating direct photon signal)

Raw counts

N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π^0

Conversions from π^0 tagged

External conversion method

Double ratio tagging method (R_γ>1 indicating direct photon signal)

Raw counts

N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π⁰

 Correct for detector effects
 Conditional acceptance and efficiency: the acceptance for the second photon in the EMCal from π⁰ decay given that we already reconstructed the first photon from a conversion pair

External conversion method

• Double ratio tagging method ($R_v > 1$ indicating direct photon signal)

Raw counts

N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π^0

Correct for detector effects

Conditional acceptance and efficiency: the acceptance for the second photon in the EMCal from π^0 decay given that we already reconstructed the first photon from a conversion pair

Correct for other background sources Cocktail ratio (other sources of decay photons)

03/03/2020

External conversion method

Double ratio tagging method (R_γ>1 indicating direct photon signal)

Raw counts

N^{incl}/N^{tag} from real data: # of conversion photons/# of conversion photons tagged as coming from π⁰

Correct for detector effects

Conditional acceptance and efficiency: the acceptance for the second photon in the EMCal from π⁰ decay given that we already reconstructed the first photon from a conversion pair

Correct for other background sources
Cocktail ratio (other sources of decay photons)

inclusive photons 13

$\langle \epsilon \rangle$ **Experimental details** — N^{incl}/N^{tag} $\overline{N_{\gamma}^{\pi^0}}$ ' Data hadron γ^{π^0} 20 N^{incl}/N^{tag} from real data: /S im 15 # of conversion photons/# of conversion 10 e photons tagged as coming from π^0 / cm Run14 Au+Au @ 200GeV, 0-20% ×10³ dN/dm_{ee} [1/GeV] 1.4 < p_{_{_{_{}}}}^{ee} < 1.6GeV e⁺ # of sig = 1.429e+06 Run14 Au+Au @ 200Ge 40 sig (err) = 1.208e+03 10⁸ dN_{incl}/dp_T -15 VTX -15 -10 -5 0 5 10 15 20 -20 conversions x [cm] 0~4 cm 20 4~8 cm 8~14 cm 10⁶ PHENIX Detector 14 ~ 20 cm 20~30 cm PC3 Central Magnet TEC 0 PbSc PbSc PC2 0.1 0.2 0.3 m_{ee} [GeV] 10⁴ PbSc PbSc • 0-20% e BBC TOF-W 7.9 • 20-40% RICH RICH В • 40-60% **PbGl** 10² PbSc Ш Vincl • 60-93% 26 ft VTX e⁺ MPC PC1 2 8 10 PC1 4 6 PbSc PbGl 0 p_{_} [GeV] Aerogel Т́ОF-Е Wenqing Fan — BNL Seminar Beam View East

03/03/2020

14

Experimental details — N^{incl}/N^{tag}

► N^{incl}/N^{tag} from real data:

* # of conversion photons/# of conversion photons tagged as coming from $π^0$

Experimental details — $<\epsilon f>$

Experimental details — cocktail ratio

Cocktail ratio (other sources e. $\Rightarrow \pi^0$ accounts for ~80% of all decay photons observed $\Rightarrow \pi^0 = 2$ 1 S im Meson Invariant Yields $-\pi^{0}$ x50 10 10 $m_T = \sqrt{p_T^2 + m^2}$ — ω x0.1 d²N dydp — η' x0.01 decay kinematics 10° 10^{-8} parent particle decay products branching ratio 10 0 2 6 4 10 π^0 98.8% meson p_{_} [GeV] γγ **Decay Photon Yields** 39.3% YΥ η –[GeV⁻¹] $\pi^+\pi^-\gamma$ 4.6% η 10 n 10² η' 2.1% YΥ dy dp_T d²N η' $\pi^+\pi^-\gamma$ **(**) 23.0% — all photons η' 2.8% 10 $\omega \gamma$ 10° $\pi^0\gamma$ 8.3% ω 10 10 10⁻⁵ 10⁻⁶ 10^{-7} 10⁻⁸ 2 3 Δ photon p₁ [GeV]

scaling for heavier mesons contributing to decay photons

03/03/2020

Wenging Fan — BNL Seminar

 $\langle \epsilon \rangle$

 γ hadron

Data

Experimental details — cocktail ratio

 $\langle \epsilon \rangle$

Data

Systematic uncertainty on R_y

- N^{incl}/N^{tag} from real data:
 N^{tag} (π⁰) extraction (~2%)
 - Conversion sample purity (<1%)</p>
- Conditional acceptance and efficiency:
 - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - Input p_T spectra (1%)
- Cocktail ratio:

Other mesons (<1%)</p>

Systematic uncertainty on R_y

- N^{incl}/N^{tag} from real data:
 N^{tag} (π⁰) extraction (~2%)
 Conversion sample purity (<1%)
- Conditional acceptance and efficiency:
 - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - Input p_T spectra (1%)
- Cocktail ratio:
 * η/π⁰ ratio (2%)
 Other mesons (<1%)

03/03/2020

Systematic uncertainty on R_{γ} — energy scale

- N^{incl}/N^{tag} from real data:
 - $\mathbf{N}^{\text{tag}}(\mathbf{\pi}^0)$ extraction (~2%)
 - Conversion sample purity (<1%)</p>
- Conditional acceptance and efficiency:
 - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - Input p_T spectra (1%)
- Cocktail ratio:
 - * η/π⁰ ratio (2%)
 - Other mesons (<1%)</p>

• Use π^0 mass to check energy scale and resolution

• Use π^0 mass to check energy scale and resolution

Systematic uncertainty on R_{γ} — material budget

- N^{incl}/N^{tag} from real data:
 N^{tag} (π⁰) extraction (~2%)
 Conversion sample purity (<1%)
- Conditional acceptance and efficiency:
 - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - Input p_T spectra (1%)
- Cocktail ratio:

* η/π⁰ ratio (2%)

Other mesons (<1%)</p>

03/03/2020

Systematic uncertainty on R_v — material budget

- N^{incl}/N^{tag} from real data: $\mathbf{*}$ N^{tag} (π^0) extraction (~2%) Conversion sample purity (<1%)</p>
- - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - ♦ Input p_T spectra (1%)
- Cocktail ratio:

Other mesons (<1%)</p>

03/03/2020

Systematic uncertainty on R_{γ} — material budget

- N^{incl}/N^{tag} from real data:
 N^{tag} (π⁰) extraction (~2%)
 Conversion sample purity (<1%)
- Conditional acceptance and efficiency:
 - Energy scale and resolution (3%)
 - Conversion photon loss due to second conversions = material budget (3%)

Systematic uncertainty on R_{γ} — material budget

 Use single γ simulation to check the conversion probability / radiation length

$$p_{conv} = 1 - exp(-\frac{7}{9}X/X_0)$$

Systematic uncertainty on R_y — material budget

 Use single γ simulation to check the conversion probability / radiation length

$$p_{conv} = 1 - exp(-\frac{7}{9}X/X_0)$$

 Conversions at small magnetic field will merge into the same cluster will be reconstructed as photon

Direct photons in Au+Au collisions

A new measurement with improved statistical precision

Direct photons in Au+Au collisions

A new measurement with improved statistical precision

Consistent with previous published results using conversion method, virtual γ method, calorimeter method

Full overlap with the published low p_T and high p_T measurements

Prompt photons in p+p collisions

Fitting function

а	b	с
6.74×10 ³	2.10	-3.30

- pQCD inspired function
- Systematic errors include the fit errors, different functional forms

At high p_T, Au+Au data consistent with N_{coll} scaled p+p → the dominant photon source is hard scattering

At high p_T, Au+Au data consistent with N_{coll} scaled p+p → the dominant photon source is hard scattering

At low p_T, Au+Au data shows a clear enhancement wrt the prompt contribution below 3GeV

Direct photon scaling with new 2014 results

What's next — onset of QGP?

What's next — what is the source of low p_T direct photons?

Looking into the centrality dependence of low p_T direct photons

- Presented a new measurement of low p_T direct photon yields in Au+Au collisions at 200 GeV for different centrality bins with 2014 dataset
 - A new reconstruction algorithm is developed to analyze this dataset, which can also be used in all other collision systems
 - Consistent with previous published results, confirming the universal scaling behavior of direct photon multiplicity
 - Higher statistical precision, a full overlap with the published low p_T and high p_T measurements
- Ongoing analysis to measure low p_T direct photon in finer centrality classes to study the source of the photons in more detail

THANKS