RF Dipole Cavity Proof-of-Principle Design and Test Prototype Design

Jean Delayen

Center for Accelerator Science Old Dominion University

Main Cast of Characters

- Subashini De Silva (ODU)
- HyeKyoung Park (ODU)
- Rocio Olave (ODU)
- Zenghai Li (SLAC)
- With help from
 - Tom Nicol (FNAL)
 - JLab team
 - CERN team
 - Niowave team

Parallel-bar Cavity Concept

UNIVERSITY

LARP

Parallel-bar Cavity Concept

- Two degenerate fundamental TEM modes
 - $-\pi$ mode :- Deflecting or crabbing mode
 - 0 mode :- Accelerating mode
- Degeneracy is removed with the inclusion of beam pipe and rounding cavity edges

OMINION

From Parallel-bar to RF Dipole Cavity

- Aspects of optimization
 - Lower and balanced peak surface fields
 - Stability of the design
 - Cylindrical shape is preferred to reduce flat surfaces
 - Cavity processing
 - Curved end plates for cleaning the cavity
 - Wider separation in Higher Order Mode (HOM) spectrum
 - Multipacting

Design Evolution

- To increase mode separation between fundamental modes
- ~18 MHz → ~ 130 MHz
- To improve design rigidity → Less susceptible to mechanical vibrations and deformations
- To lower peak magnetic field
- Reduced peak magnetic field by ~20%

Design Evolution

- Transition from TEM-type design to TE-like design
- To remove higher order modes with field distributions between the cavity outer surface and bar outer surface
- Eliminate multipacting conditions

High Luminosity

LARP

- To lower peak magnetic field
- Reduced peak magnetic field by ~25%
- To achieve balanced peak surface fields
- $B_{\rm P}/E_{\rm P} \approx 1.8 \, {\rm mT/(MV/m)}$
- Reduced field non-uniformity

Ridged Waveguide Cavity (SLAC)

400 MHz LHC Crabbing System – Zenghai Li

RF Field Profile of RF Dipole Cavity

LARP

RF Dipole Cavity Properties

- Compact design
 - Supports low frequencies
- Fundamental deflecting/crabbing mode has the lowest frequency
 - No LOMs, no need for notch filter in HOM coupler
 - Nearest HOM widely separated (~ 1.5 fundamental)
- Low surface fields and high shunt impedance
- Good balance between peak surface electric and magnetic field
- Good uniformity of deflecting field due to high degree symmetry

Multi-cell RF Dipole

- Reduced total cavity and cryomodule length
- Existence of same order modes (SOMs)
 - SOMs have lower frequency than fundamental
 - No. of SOMs = No. of cells

	2 cell	3 cell				
Frequency	400	400	MHz			
SOMs	374.5	351.6 / 376.8	MHz			
Aperture	84	84	mm			
Cavity length	105	147	cm			
Cavity diameter	34.5	35.4	cm			
V_T^{*}	0.375	0.375	MV			
E_p^*	4.26	4.75	MV/m			
B_p^*	7.4	7.77	mT			
$[R/Q]_T$	488.4	708.1	Ω			
Geometrical Factor (<i>G</i>)	127.8	131.8	Ω			
$R_T R_S$	6.2×10 ⁴	9.3×10 ⁴	Ω^2			
At $E_T^* = 1$ MV/m						

RF Dipole Development Activities at ODU

Design Specifications for 400 MHz P-o-P

• Basic Properties

• Required fields

Property	Value	Unit		
V_T^{*}	0.375	MV		
E_p^{*}	4.02	MV/m		
B_p^{*}	7.06	mT		
B_p^*/E_p^*	1.76	mT/ (MV/m)		
U^{*}	0.195	J		
$[R/Q]_T$	286.95	Ω		
Geometrical Factor (<i>G</i>)	140.86	Ω		
$R_T R_S$	4.04×10 ⁴	Ω^2		
At $E_T^* = 1$ MV/m				

Property	Va	Unit	
V _T	3.4	5.0	MV
E_p	36.5	53.6	MV/m
B_p	64.0	94.2	mT
Τ	2.0	4.2	K
R _{BCS}	1.3	70.0	nΩ
R _{res}	20	nΩ	
R_s	21.3	90.0	nΩ
$P_{diss}(3.4 MV)$	6.0	25.8	W
Q_0	6.7	1.6	×10 ⁹

HOM Properties of the RF Dipole Cavity

Wakefield and Impedance (400 MHz)

- T3P EM Time Domain Solver in the SLAC ACE3P Suite
- Bunch Parameters
 - σ = 0.014 m
 - charge = 1 pC

$$\lambda(s) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(s-s_0)^2}{2\sigma^2}\right]$$

- Wakefield Parameters
 - # of points = 50,000
 - Time stamp (dt) = 0.2 ns
 - Maximum wakefield distance (S) = 3000 m
 - RMS frequency for a 1.4 cm bunch ≈ 2.5 GHz

$$f_{\rm RMS} = \frac{c}{\sqrt{2}\pi\sigma}$$

Wakefield Analysis

Multipacting in Proof-of-Principle Design

• Multipacting analysis using Tack3P in SLAC – ACE3P suite

Fabrication

High Luminosity

LARP

LHC

Fabrication

 End plates with brazed stainless steel flanges

Center shell formed in two halves

 Finished cavity shipped to ODU –March, 2012

High Luminosity LHC

LARP

Field Profile Measurement

- On-axis transverse electric field was measured using a Teflon bead
- Both on-axis transverse electric and magnetic fields were measured using an AI metallic bead

Optical Inspection

- All the welding seams were inspected ~ 180 images
- Grain boundaries

Weld seam

Surface Treatment, Preparation, and Testing

- Bulk BCP 85 μm
- Heat treatment At 600° C for 10 hours
- Light BCP ~10 μ m
- High Pressure Rinse 3 passes
- Assembly in the clean room

- RF Test Plan
 - High power tests at 2 K and 4 K
 - Rs vs. T
 - Pressure test
 - Lorentz detuning
 - No He processing was done

- RF Tests Performed
 - 2 K high power test
 - Cavity warmed up to 4 K
 - 4 K high power test
 - Cavity cooled down to 2 K
 - 2 K high power test

Chemical Processing

High Luminosity

LARP

Bulk BCP

- Planned total removal 120 μ m
- Acid mixture was contaminated with glycol
 - Reduced etch rate from 2.7-2.8 μ m /min to 1.8 μ m/min
- Average removal 85 microns
 - Average removal in edges > 90 μ m
 - Average removal on flat surfaces < 70 μ m

Light BCP

Removal of 10 μ m after heat treatment

Heat Treatment

Assembly

- Followed by a HPR of 3 passes
- Ultrasonic degreased hardware
- Leak tested

Page 25

Assembly in clean room

Preparation for Test

- Cable calibration
 - Q₁ = 2.76×10⁹
 - $Q_2 = 8.62 \times 10^{10}$
- LLRF control

Test with 500 W rf amplifier

4.2 K Test Results

2 K Test Results

Residual Surface Resistance - Low Field Q

High Luminosity LHC

LARP

Pressure Sensitivity and Lorentz Detuning

- Simulated Lorentz coefficient (k_L)
 - 400 MHz →-117.3 Hz/(MV/m)²

499 MHz RF-Dipole Cavity

RF Properties – 499 MHz Cavity					
Aperture Diameter (d)	40.0	mm			
Nearest HOM	777.0	MHz			
E_p^*	2.86	MV/m			
B_p^*	4.38	mT			
$[R/Q]_T$	982.5	Ω			
Geometrical Factor (<i>G</i>)	105.9	Ω			
$R_T R_S$	1.0×10 ⁵	Ω^2			

At $E_T^* = 1$ MV/m

Surface Processing Procedure

- Bulk BCP of ~150 μm
- Average removal
 - 1st treatment: 108 μ m
 - 2nd treatment: 200 μm
- Heat Treatment → H₂ degassing at 600^oC 10 hours
- Light BCP Removal of 10 μm (2nd time: 20 μm) after heat treatment
- High pressure rinsing in 2 passes
- Cavity Assembly with fixed coupling

499 MHz RF-Dipole Cavity

Multipacting was easily processed during the 4.2 K rf test

- No multipacting levels were observed in the reprocessed cavity
- Design requirement of 3.3 MV can be achieved with 1 cavity
- Achieved fields at 2.0 K
 - E_T = 14 MV/m
 - V_T = 4.2 MV
 - E_P = 40 MV/m
 - B_P = 61.3 mT

499 MHz – Surface Resistance

• Measured Q₀

High Luminosity

LARP

- 1st Test: 1.6×10¹⁰
- 2nd Test: 8.1×10⁹
- Reduced Q₀ at 2.0 K with surface reprocessing
 - 1st bulk BCP removal: 108 μm
 - 2nd bulk BCP removal: 200 µm

- Q₀ dropped with the increase in residual surface resistance
- Residual resistance
 - 1st Test: 5.5 nΩ
 - 2nd Test: 9.0 nΩ

750 MHz Crabbing Cavity for MEIC

- Crabbing cavity for proposed Medium-Energy Electron-Ion Collider (MEIC)
- Desired net deflection
 - e⁻ beam: 1.5 MV
 - p beam: 8 MV

Parameter	750 MHz	Unit
Nearest mode to π mode	1062.5	MHz
Deflecting voltage (V_T^*)	0.2	MV
Peak electric field (E_P^*)	4.29	MV/m
Peak magnetic field (B_P^*)	9.3	mT
Geometrical factor ($G = QR_S$)	136.0	Ω
$[R/Q]_T$	125.0	Ω
At $E_T^* = 1$ MV/m	•	5

* PhD project Alejandro Castilla

750 MHz Crabbing Cavity for MEIC

- Substantial improvement after electro-polishing
- Multipacting easily processed and did not reoccur

High Luminosity

LARP

RF-Dipole Square Cavity Options

- Square-type rf-dipole cavity to further reduce the transverse dimensions
- Frequency is adjusted by curving radius of the edges

LARP

RF-dipole cavity with modified curved loading elements across the beam aperture to reduce field non-uniformity

Prototype Design vs. Proof-of-Principle

OLD

DMINION UNIVERSITY

NATIONAL ACCELERAT

Prototype design has improved rf-properties

High Luminosity

LARP

LHC

Parameters	Prototype	P-o-P	Units			
Frequency of fundamental	400	400	MHz			
Frequency of 1 st HOM	632	590	MHz			
Deflecting Voltage (V_T^*)	0.375	0.375	MV			
Peak Electric Field (E _p *)	3.65	4.02	MV/m			
Peak Magnetic Field (B_{p}^{*})	6.22	7.06	mT			
Peak Electric Field (E _p **)	32.6	35.9	MV/m			
Peak Magnetic Field (B _p **)	55.6	63.1	mT			
B _p /E _p	1.71	1.76	mT/(MV/m)			
Stored Energy (U*)	0.13	0.195	J			
[R/Q] _T	427.4	287.0	Ω			
Geometrical Factor (G)	106.7	140.9	Ω			
R _T R _S	4.6×10 ⁴	4.0×10 ⁴	Ω^2			
*At $E_T = 1 \text{ MV/m}$ ** At $V_T = 3.35 \text{ MV}$						

Frequency Sensitivity to Dimensions

Multipole analysis

Curvature around beam aperture to

- Reduce field non-uniformity
- Suppress higher order multipole components

Voltage deviation at 20 mm ~ 1%

High Luminosity LHC

LARP

Higher Order Multipole Components

Multipole component		Units
V _T	10	MV
b ₁	33	mT m
b ₂	-0.004	mT
b ₃	369	mT/m
b ₄	18	mT/m ²
b ₅	-1.9×10 ⁶	mT/m ³

- Multipole component b₃ is reduced below requirements
- No current specifications for other higher order multipole components
- Shift in electrical center due to asymmetry of couplers

Effect on multipole components of imperfections due to fabrication errors

- (A) Yaw (rotation about y-axis) of one pole.
- (B) Pitch (rotation about x-axis) of one pole.
- (C) Roll (rotation about z-axis) of one pole.
- (D) Horizontal displacement of one pole.
- (E) Vertical displacement of one pole.
- (F) Blending radius along depth of one pole.
- (G) Blending radius of the feather-like structure near the beam line of one pole.
- (H) Aperture radius in one pole.
- (I) Blending radius at the outer corner of one pole
- (J) Width of pole (uneven) at beamline
- (K) Width of pole (uneven) at outer conductor
- (L) Aperture displacement at beamline

- Strength of the multipole components is mainly determined by the aperture region of the poles near the beamline.
- Analysis focused on individual imperfections of the ideal cavity poles due to fabrication or welding errors (no deformations due to tuning processes considered).

Small individual imperfections (~1 mm) have negligible effects on the multipole components, but may shift the electrical center and operating frequency.

The largest effect on the multipole components observed is produced by the roll of a pole

Roll 5°

The largest frequency shift observed is produced by the horizontal displacement) of a pole \rightarrow loss of field uniformity across aperture

	E center	b₁	b ₂	b ₃	b ₄	
Imperfection	(mm)	(mT m)	(mT m/m)	(mT m/m²)	(mT m/m ³)	
None	0.00	33	-0.004	369	18	
Yaw 1°	0.03	33	-0.031	361	411	
Yaw 2°	0.12	33	-0.003	333	1581	
Yaw 5°	0.75	33	-0.228	138	9835	
Pitch 1°	0.00	33	-0.109	382	-181	
Pitch 2°	-0.02	33	-0.504	404	-861	
Pitch 5°	-0.09	33	-3.550	551	-5614	
Roll 1°	0.01	33	-2.018	441	-1710	
Roll 2°	0.02	33	-4.801	519	-3746	
Roll 5°	0.14	33	-16.144	852	-11158	
pole x-offset 1 mm	0.28	33	-9.52	655	-6021	
pole x-offset 2 mm	0.52	33	-19.0	959	-13406	
pole x-offset 3 mm	0.71	33	-27.6	1258	-21727	
Note: Normalized to $V_{T} = 10 \text{ MV}$						

Imperfection models studied

xoffset \bullet

۲

•

Multipole Field with a Tilted/Offset Pole

	xcenter off		B3	B5	B7		
	(mm)	Vy/Vx	(mT*m)/m^2	(mT*m)/m^4	(mT*m)/m^6	B3 Skew	B5 Skew
xtilt 0.5 deg	0.73		492	2.2E+06	7.8E+08		5.4E+03
ytilt 0.5 deg	0.10	2.2E-03	489	2.3E+06	7.5E+08	49	5.5E+04
zrot 1 deg	0.10	7.9E-03	494	2.2E+06	7.0E+08	136	5.7E+03
xoff 2mm	1.55		677	2.1E+06	7.3E+08		1.6E+04
yoff 2mm	0.09	2.2E-03	536	2.2E+06	6.9E+08	311	2.1E+05
zoff 2mm	0.44		509	2.3E+06	7.2E+08	13	3.8E+04

Note: Normalized to $V_T = 10 \text{ MV}$

- Small effects on multipole fields
- Induce skew sextupole and deflection in other plane
- Cause shift in electric center
- In general, tolerance manageable

Prototype Design vs. Proof-of-Principle

Wide frequency separation between modes

Nearest cavity mode ~230 MHz away

High Luminosity

LARP

LHC

Nearest cavity mode ~190 MHz away

HOM Damping Considerations

- Provide adequate coupling to HOMs
- Preserve the symmetry of the fundamental mode
- Minimize the number of HOM ports
- Locate HOM ports in low-field locations
- Minimize the number of filters for fundamental mode

HOM Damping

- 2 HOM ports
 - 1 port does not couple to the fundamental mode
 - Does not perturb the symmetry
 - No need for filtering the fundamental mode
 - 1 port couples to the fundamental mode
 - · Aperture symmetrical to aperture for fundamental power coupler
 - 2 options for filter
 - Waveguide with cut-off frequency between fundamental and HOM
 - » High power handling
 - Lumped element
 - » Demountable

Surface Fields

- Low surface field at coupler location: no enhancement
- Low surface field in coupler

Prototype RF Dipole Coupler Ports Locations

LARP

Page 50

LHC

LARP

OLD

0MINIO

UNIVERSITY

Prototype RF Dipole Design - Multipacting

Using Track3P from the ACE3P Code Suite developed at SLAC

Experience from PoP cavity \rightarrow multipacting in the cavity not a concern

Prototype RF Dipole Design - Multipacting

NATIONAL ACCELERATOR

LARP

Waveguide Length

 Length of HOM waveguide to achieve Q_{ext} > 10⁹ for fundamental mode

Hi-pass Filter H-HOM Coupler

 H-HOM coupler with hi-pass filter and coupling hook

- Center rod diameter: 14 mm
- Larger cylinder diameter: 74 mm
- 50 ohm port: 14mm/32.2mm

RFD: HOM Damping

- All modes well damped.
- Solid lines are design requirement (LHC-CC10)

Multipacting in Hi-pass Filter H-HOM Coupler

- MP resonances found in the gap if there are flat surfaces
- Eliminated MP with a full rounding
- Nominal deflecting voltage VT = 3.4MV

Multipacting in FPC Coupler

- No multipacting in the hook region
- Has resonant trajectories in the coaxial region at higher deflecting voltages
- Nominal deflecting voltage VT = 3.4 MV

Power Dissipation on FPC Coupling Hook Antenna

676 W 178 W 69 W

Surface Fields on FPC and HOM couplers

At 3.4MV deflecting voltage	E_S (MV/m)	B_S (mT)
H-HOM Hook	5.4	14
H-HOM T	2.4	1.3
H-HOM probe	0.6	0.4
FPC Hook	1.4	7.6

RFD: Power Loss On Coupler Surfaces

 At 3.4MV deflecting voltage **Material Power Dissipation (W)** 0.00089 H-HOM Hook+T Nb (Rs=10n Ω) Cu (Rs=5.2mΩ) H-HOM Probe 0.084 Cu (Rs= $5.2m\Omega$) V-HOM probe 0.077 **FPC Hook** Cu (Rs= $5.2m\Omega$) 178 (Qext=5e5)(shorter hook) FPC Hook Cu (Rs= $5.2m\Omega$) 69 (Qext=5e5)(New hook)

Prototype RF Dipole Design – Tuner Concept

Maintain symmetry to prevent shift of electrical center line

Tuning option	Hz/N	kHz/ mm	Note		
-	-5	-90	Requires too large force		
	74	450	Force vs. frequency change in the practical range		
	71	930	Twice sensitive than above option at sensitivity vs cavity deformation	Same as above	

Simulations done with cavity with stiffeners **and** 2K material properties

- Tuning from the top and/or bottom of the cavity
- Use as many common components as possible from other cavity designs.
- Thermal study needs to be done.

Tom Nicol/Fermilab

Prototype RF Dipole Design – Tuner Concept

Based on the Jlab 12 GeV Upgrade Cryomodule Tuner

Prototype RF Dipole Design – Tuner Concept

Tuner Effect at OC on Multipole Components

Deformation depth	b0 (kV)	b1	b2	b3	b4	b5
none 3 mm	-1.03 -1.07	33.10 33.08	0.40	454.66 451.77	-471.86 -381.65	-1885114.32 -1886364.78
5 mm	-1.08	33.09	0.41	453.52	-326.56	-1885200.90
deformation 3mm deep	b0 (kV)	b1	b2	b3	b4	b5
on x-axis	-1.07	33.08	0.40	451.77	-381.65	-1886364.78
3 mm x-axis offset	-1.09	33.08	0.43	452.71	-315.11	-18885977
5 mm x-axis offset	-1.06	33.08	0.39	451.16	-409.55	-1886432

No noticeable effect on higher order multipole components or shift on electrical center when tuner is applied centered or offaxis on the cavity

Note: Normalized to $V_T = 10 \text{ MV}$

Summary

- 3 Proof-of-principle RF-Dipole cavities have been built and tested: 400 MHz, 499 MHz, 750 MHz
 - All have exceeded design requirements (400 MHz by a factor of 2)
 - Multipacting virtually non-existent
- Prototype RFD has improved properties over PoP
 - Lower surface fields and higher shunt impedance
 - Lower multipole components
- HOM damping with 2 couplers in low-surface field locations
 - One does not couple to fundamental mode
 - 2 options for 2nd one
- Fundamental and HOM coupler designs have low losses
- Tuner design is based on proven concept

