

LHC Crab Cavity Overview

R. Calaga, E. Jensen, CERN Crab Cavity Review, May 5, 2014

> On behalf of the LHC-CC collaboration Special Ack: CERN, RF, EN & TE Groups

Present & Future, LHC

Increase by x10

HL-LHC Upgrade $(2023-30+) \sim 300 \text{ fb}^{-1}/\text{yr}$ 1.2 km of the LHC to be upgraded (IR magnets, crab cavities, collimation)

32 parasitic collisions/IP \rightarrow Total 128

ATLAS/CMS

60m common channel

Beams separated by a crossing angle to avoid collisions outside the interaction point

Upgrade \rightarrow reduce beam size by factor ~ 2

Consequence \rightarrow approx double the crossing angle

Lumi-Levelling & CK Scheme

In addition to peak luminosity improvement, a constant (leveled) luminosity is a vital component to maximize the integrated luminosity

Changing Pwinski-angle along the store using crab cavities Changing the beam size at collision point using IR optics Changing bunch length using the RF gymnastics Changing Pwinski-angle in both transverse planes (CK scheme to density level)

Full compensation in crossing plane & approx half the crossing angle in parallel plane Number of cavities remain same as standard crab compensation (+flat optics + BBLR)

LHC Crab Cavities

Some Basic Parameters

Voltage = 3.4 MV/cavity (4 cavities /beam /IP side)

Frequency = 400.79 MHz

 $Qext = 3-5 \times 10^5$

RF power source = 80 kW

Cavity tuning/detuning $\sim \pm 1.5$ kHz (or multiples of it)

Technology Choice

Superconducting cavities to produce ~3.4 MV deflecting voltage Very compact concepts to allow for integration

Double 1/4-wave

RF Dipole

Three proof-of-principle cavities built & tested

Favorable distribution of peak surface fields (And compact due to quasi TEM or TE11-like)

x6 smaller R/Q

HOMs well separated

Same with other designs

Latest Cavity Designs

Double Quarter Wave

4-Rod

Next two sessions will address the design and development Issue #1: Aperture & Cavity Envelope

For a frequency of 400 MHz & the minimum aperture of 84mm The cavity envelope cannot exceed 145 mm

The 590 μ m crossing angle requires about 12-13 MV which is provided by 4-cavities. Three competitive designs (non-classical) under study

Aspect #2: Impedance

See tomorrow B. Salvant

Longitudinal criteria:

Threshold set at 200 k Ω (E=7TeV, N =2.2x10¹¹, 4 σ =1ns)

Can be relaxed as $f^{5/3}$ 3.5 3 ш40W 4sy 1.5 7TeV, 2.5eVs Nominal 1 0.5 0.2 0.8 0.4 0.6 0 1 f GHz E. Shaposnikova, LHC-CC10

Transverse criteria:

Threshold of ~5 M Ω/m (determined by damping time of 5ms) Assuming only narrow-band impedances at β -sidebands

Remark: Main RF cavities are damped to $Q_{_{ext}} \sim 10^2$ - 10^3

Aspect #3: HOM Power

Beam spectrum very dense due to irregular filling scheme

Uncertainty on both filling scheme & exact HOM freq lead us to choose ~ 1 kW as an approximate scale for the power handling.

Aspect #4: Precise control of Frequency

See tomorrow P. Baudrenghien

Precise & reproducible cavity tuning

 $\mathsf{Stability} \to \mathsf{fundamental} \ \mathsf{mode} \ \mathsf{impedance} \ \mathsf{driving} \ \mathsf{CBI}$

Power overhead

Aspect #5: Control of voltage & phase

Independent cavity control of amplitude & phase for stability & noise Strong feedback across IP to mitigate cavity failure effects Cavity transparency when not in use

Amplitude jitter $\Delta V/V = 4 \times 10^{-4} \rightarrow \text{Residual angle 0.25} \mu\text{rad}$

See tomorrow P. Baudrenghien

On wed. T. Mastoridis

Aspect #6: Field Quality

Like IR magnets, higher order components of the deflecting field important

mTm/m ⁿ⁻¹	MBRC	4-Rod	Pbar/DRidge	¹ ⁄4-wave
b ₂	55	0	0	0
b ₃	7510	1162	455	1076
b ₄	82700	84	24.6	92
b ₅	2.9×10^{6}	-2.29×10 ⁶	-2.1×10 ⁶	-0.1×10 ⁶
b ₆	52×10 ⁶	0	0	0
b ₇	560×10 ⁶	-638×10 ⁶	700×10 ⁶	7×10 ⁶

Aspect #7: Schedule & Implementation

Three proof-of-principle cavities fabricated & tested Two funded in US (SBIR-USLARP) & third in Europe (all built by Niowave)

Advanced stage of SPS test cryomodule (nominally designs frozen today, but...) Detailed schedule in place both for fabrication & installation

How many types to be retained for the LHC ? Remember alternating crossing

Aspect #8: SPS Test Module

Proof of principle demonstration with protons Technology validation, performance, stability Effects on the beam, cavity failures, radiation

Produce a beam ready module (standards, safety, vacuum, integration...)

See today/tomorrow O. Capatina

RF Layout

See talks tomorrow: E. Montesinos, P. Baudrenghien

Input Coupler Interface

See talk tomorrow: E. Montesinos

Common Vertical Power Coupler interface imposed for all cavities

SPS type disk ceramic adapted for 62mm, 50Ω coxial coupler (with coax-waveguide transition WR2300)

Double-wall tube interface between cavity-vacuum vessel acting as the supporting system

An important issue is the heat load and heating of the FPC

HOM Couplers

As designs are different, coupling scheme is not imposed

Very strong damping along with potentially high HOM power (~1 kW) is specified as a requirement

As a result both coxial & waveguide type coupling have emerged in various forms all of which are on the cavity body

An important issue is the heat load both for SPS (very limited) & in the LHC in view of the 32 cavities

Aspect #9: Cryogenics in SPS

Two primary circuits 2 K and 80 K (main interface from the top)

Cavity & HOM couplers operated at 2K saturated Helium

Power couplers and Cold/Warm transitions intercepted with LN2 at 80 K.

Power coupler intercept

See tomorrow: K. Brodzinski

Cryostat Integration into SPS

See tomorrow: A. Macpherson's Talk

Integration into SPS Bypass

Common Design Approach

2.75m

Cryo Interface

2.9m

The next 2 Days

Why we are here

Review 3 of the most promising deflecting cavity concepts

What we (or I) hope from it Can we in a clear and neutral way compare the 3-concepts Provocatively should we continue with the 3-design concepts

Key challenge

To assemble this international puzzle