

Tutorial Structure

1/29/2020 EIC Tutorial on Full Detector Simulations 2

• Short introduction to Fun4All
• Example 0: Implementing Jaroslav’s Luminosity Monitor with least modifications
• Using Fun4All for real
• Example1: Implementing simple Detector in Fun4All
• Example 2: Momentum resolution of configurable Si+TPC
• Example 3: Adding your detector to a full detector implementation
• List of other things you can do with it
• HELP!!!!!
• Future

What is assumed

• Basic C++ knowledge (what is a base class and virtual methods)
• Basic familiarity with root (what is a root macro, drawing histograms from ntuples)

• Currently ROOT5 and ROOT6 are supported with ROOT5 being phased out

• Can run our software, either via your rcf account or on your laptop/desktop:
https://github.com/EIC-Detector/Singularity

• For running under JLab iFarm accounts:
https://eic-detector.github.io/tutorials_example2_JLab.html

• Some familiarity with git (what is a repository, git clone)
• You definitely want a github account

1/29/2020 EIC Tutorial on Full Detector Simulations 3

https://github.com/EIC-Detector/Singularity
https://eic-detector.github.io/tutorials_example2_JLab.html

Brief History of Fun4All
• Development started in 2002, in use by PHENIX from 2003 on (reconstruction

and analysis of Run3 data)
• Needed to get many subsystems who developed their code independently

and without coordination under one umbrella
• Development driven by reconstruction and analysis needs – not by “beauty”

or some abstract design considerations (or “rules”)
• Modularity is key – components can be added/modified/removed without

having to modify bits and pieces all over the place
• Plenty of functionality added over the years, some of them waiting to be

rediscovered
• 2011 Adding Geant4 as subsystem
• Split from PHENIX in 2015, lots of cleanup and modernization

Code in
https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/offline/framework

1/29/2020 EIC Tutorial on Full Detector Simulations 4

https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/offline/framework

What does it do for us

• Read input files (many different types)

• Write output files (different types, automatic saving of
selected data objects)

• Somewhat manages the Node Tree - our storage for data
objects (more later)

• Call the analysis/reconstruction modules in the order in
which they were registered (correct ordering is
responsibility of the user)

• Make snapshots at any state of the reconstruction/analysis

• Access to calibrations

Fun4All has been our workhorse for 16 years, running raw data
reconstruction, analysis, simulations and embedding

1/29/2020 EIC Tutorial on Full Detector Simulations 5

Structure of our framework Fun4All

That’s all there is to it, no backdoor communications – steered by ROOT macros

Output ManagersInput Managers Node Tree(s)

Analysis/Reconstruction Modules

DST

Raw Data (PRDF)

HepMC

Histogram Manager

Root File

Calibrations

PostGres DB

Fun4AllServerYou

DST

Raw Data (PRDF)

HepMC/Oscar

Empty

EIC smear

File

6

Simulations
• GEANT4 based (no GEANT3, no virtual Monte Carlo)
• Fully integrated into our analysis chain as Reconstruction Module
• Modular design – all detectors are self contained
• Configured with Root macros
• Generic detectors (boxes, cylinders, cones) exist
• EIC-sPHENIX subdetectors fully implemented
• 8 years of development
• Used for published EIC detector concepts:

• https://arxiv.org/pdf/1402.1209.pdf (2104)
• An EIC Detector Build Around The sPHENIX Solenoid (2018)

Tutorials:
https://github.com/sPHENIX-Collaboration/tutorials

1/29/2020 EIC Tutorial on Full Detector Simulations 7

https://arxiv.org/pdf/1402.1209.pdf
https://indico.bnl.gov/event/5283/attachments/20546/27556/eic-sphenix-dds-final-2018-10-30.pdf
https://github.com/sPHENIX-Collaboration/tutorials

G4 program flow within Fun4All
Fun4AllServer

PHG4Reco

N
o

d
e

 tree

Interface Detector 1 Construct() → Geometry

Stepping Action (Hit extraction)

Interface Detector 2 Construct() → Geometry

Stepping Action (Hit extraction)

G
e

an
t4

Digitisation

Tracking,Clustering

RCdaq

Jet Finding, Upsilons, Photons,…

calls

dataflow

Setup

Event generator (input file, single particle, pythia8)

Output Files

Initializes Geant4 before detectors are added

Raw Data

Modular: Each
detector is its
own entity
providing the
flexibility
needed for
complex
setups

Generic detectors
like boxes,
cylinders, cones
exist and can be
configured on a
macro level

The processing is
done by chaining
up modules. At
every step the
state of the Node
Tree can be saved
and the analysis
can pick up where
it left

Common reco
for raw and
simulated data

1/29/2020 8

Currently implemented event generators

Djangoh

PEPSI

Rapgap

PYTHIA

Milou

LEPTO

DPMJet

gmc_trans

• Via Eic-Smear interface (e-p/e-A)

Sarte as seen by EIC detector

Pythia8 in a 6
layer silicon
detector mockup
and 2T field

Very peripheral heavy ion
collision from hijing

Full Truth information preserved: anything can be traced back to the input particle

• Via Fun4All
• Hijing
• Pythia6
• Pythia8
• Sartre
• Jetscape (needs work)
• Generic HepMC 2/OSCAR
• Single Particle Generators
• Embedding in existing events

10 GeV Au on
water phantom
(NSRL)

Distribution

1/29/2020 EIC Tutorial on Full Detector Simulations 10

• OS image (rcf SL7 distribution) in singularity container
• Libraries and 3rd party packages installed in cvmfs – central maintenance of packages
• Dedicated EIC cvmfs volume: /cvmfs/eic.opensciencegrid.org

• Set up environment:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n

• Set up local install area:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh <install area>

How to build a package
• We use autoconf/automake (configure) to build our code

• This does put some files into your source area, be careful what you commit

• Each package (directory) is build by itself
• You only have to build the package you are working on

Keep your source, build and install areas separately, but use common install area

Source1 in <srcdir1>

Source2 in <srcdir2>

build1 in <builddir1>:
<srcdir1>/autogen.sh –prefix=<installdir>
make install

build2 in <builddir2>:
<srcdir2>/autogen.sh –prefix=<installdir>
make install

One install area in <installdir>

Use the full path so the debugger
can find the source file

If you use a private install area, you need to tweak your environment (.csh for cshell):
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh <install area>

Example 0: Jaroslav’s Luminosity Monitor

1/29/2020 EIC Tutorial on Full Detector Simulations 12

Changes needed:
• removal of detector and sensitive detector inheritance
• storing of physical volumes for lookup in stepping action
• propagating ROOT TTree downstream
• replace DetectorConstruction.cxx by G4LmonDetector interface
• Dropped G4 messenger
• Drop input reader (replace by eic-smear interface?)
• 20 lines changed in cxx files, 8 in include files (+some missing declarations)

Project: GEANT4 based simulation, uses hand made ROOT TTrees to save output
Goal: Keep code changes to an absolute minimum, not re-implement using Fun4All features
Approach: Using Fun4All-G4 Detector as simple wrapper

Original code:
https://github.com/adamjaro/lmon

Fun4All based Code:
https://github.com/EIC-Detector/Fun4All-lmon

https://github.com/adamjaro/lmon
https://github.com/EIC-Detector/Fun4All-lmon

Example 0: Jaroslav’s Luminosity Monitor

1/29/2020 EIC Tutorial on Full Detector Simulations 13

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example0.html

At the Root prompt:
.x Fun4All_Lmon.C(-1)
.L Display.C
PHG4Reco *g4 = QTGui();

Alt F7 to move large G4 window in
windows virtual box

And on the G4 cmd line:
/Fun4All/run 1

Hint: Root understands tab expansion

Or at the Root prompt:
.x Fun4All_Lmon.C(-1)
.L DisplayOn.C
PHG4Reco *g4 = DisplayOn();
Fun4AllServer *se = Fun4AllServer::instance();
se->run(1);

Shell commands:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n
git clone https://github.com/EIC-Detector/Fun4All-lmon
cd Fun4All-lmon/source
mkdir build
cd build
../autogen.sh -prefix=$HOME/myinstall
make install
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh
$HOME/myinstall
cd ../../macros
root.exe

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example0.html

What’s in it for Jaroslav?

1/29/2020 EIC Tutorial on Full Detector Simulations 14

• Access to all implemented
generators

• He can keep using everything he
developed downstream, no
changes to his output

• Less code to maintain

What’s in it for Jaroslav?

1/29/2020 EIC Tutorial on Full Detector Simulations 15

• Access to all implemented
generators

• He can keep using everything he
developed downstream, no
changes to his output

• Less code to maintain

What’s in it for Jaroslav?

1/29/2020 EIC Tutorial on Full Detector Simulations 16

He can start playing with the
big kids, detectors are added
on the macro level, no change
in any other code needed

The fine print:
The stepping action does not put any objects on our node tree
This does not include the detector into any analysis chain
There are overlaps (the vacuum box) which need to be dealt with
Our world is filled with G4_Air, need to add a vacuum system

Using Fun4All for Real

G4 program flow Example 0
Fun4AllServer

PHG4Reco

N
o

d
e

 tree

Interface Detector 1 Construct() → Geometry

Stepping Action (Hit extraction)

G
e

an
t4

calls

dataflow

Setup

Event generator (input file, single particle, pythia8)

Output File

Initializes Geant4 before detectors are added

1/29/2020 18

G4 program flow within Fun4All
Fun4AllServer

PHG4Reco

N
o

d
e

 tree

Interface Detector 1 Construct() → Geometry

Stepping Action (Hit extraction)

Interface Detector 2 Construct() → Geometry

Stepping Action (Hit extraction)

G
e

an
t4

Digitisation

Tracking,Clustering

RCdaq

Jet Finding, Upsilons, Photons,…

calls

dataflow

Setup

Event generator (input file, single particle, pythia8)

Output Files

Initializes Geant4 before detectors are added

Raw Data

Modular: Each
detector is its
own entity
providing the
flexibility
needed for
complex
setups

Generic detectors
like boxes,
cylinders, cones
exist and can be
configured on a
macro level

The processing is
done by chaining
up modules. At
every step the
state of the Node
Tree can be saved
and the analysis
can pick up where
it left

Common reco
for raw and
simulated data

1/29/2020 19

GEANT steps

GEANT propagates particles one step at a time. The step size is
determined by the physics processes associated with the current
particle or when a boundary between volumes is crossed

After each step the user stepping method is called with a pointer
to the current volume which has access to the full information

(energy loss, particle momentum at beginning and end of step, …)1/29/2020 20

Our G4Hits (you’ll hear us talking about them a lot)
In our stepping method we add the energy loss in each volume and
store the entry and exit coordinates and time (and subdetector specific

info like ionization energy, light output,…)

We also keep the ancestry for G4Hits so any hit can be traced back to a
primary particle. To reduce size we do not store particles which do not leave

G4Hits and are not in the ancestry of a particle which created a G4Hit

G4Hit

1/29/2020 EIC Tutorial on Full Detector Simulations 21

Access to Data Objects,
understanding our Node Tree

TOP

RUN DST PAR PRDF

FIELD_CONFIG

PIPE
G4GEOPARAM_PIPE

CYLINDERGEOM_PIPE

INTT
G4GEOPARAM_INTT

G4CELLPARAM_INTT

MVTX G4GEOPARAM_MVTX

PHG4INEVENT

TPC
G4HIT_ABSORBER_TPC

G4HIT_TPC

MVTX G4HIT_MVTX

PIPE G4HIT_PIPE

FIELD_MAP

INTT

G4GEO_INTT

CYLINDERGEOM_INTT

MVTX G4GEO_MVTX

PIPE G4GEO_PIPE

G4CELLGEO_INTT

PHDataNode

PHCompositeNode

PHIODataNode

The Node Tree
• The Node Tree is at the center of the Fun4All software universe (but it’s more

or less invisible to you). It’s the way we organize our data and make them
accessible to modules

• It is NOT a Root TTree

• We have 3 different Types of Nodes:

• PHCompositeNode: contains other Nodes

• PHDataNode: contains any object

• PHIODataNode: contains objects which can be written out to DST

• PHCompositeNodes and PHIODataNodes can be saved to a DST and read back

• This DST contains root TTrees, the node structure is saved in the branch names.
Due to Roots limitations not all objects can become PHIODataNodes (e.g.
anything containing BOOST). This needs to be revisited with Root 6.

• We currently save 2 root trees in each output file, one which contains the
eventwise information, one which contains the runwise information

• Input Managers put objects as PHIODataNodes on the node tree, output
managers save selected PHIODataNodes to a file.

• Fun4All can manage multiple independent node trees

1/29/2020 EIC Tutorial on Full Detector Simulations 23

The Node Tree

Node Tree under TopNode TOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
INTT (PHCompositeNode)/

G4HIT_INTT (IO,PHG4HitContainer)
TPC (PHCompositeNode)/

G4HIT_ABSORBER_TPC (IO,PHG4HitContainer)
G4HIT_TPC (IO,PHG4HitContainer)

CEMC_ELECTRONICS (PHCompositeNode)/
G4HIT_CEMC_ELECTRONICS (IO,PHG4HitContainer)

CEMC_SPT (PHCompositeNode)/
G4HIT_CEMC_SPT (IO,PHG4HitContainer)

G4HIT_CEMC (IO,PHG4HitContainer)
G4HIT_ABSORBER_CEMC (IO,PHG4HitContainer)
HCALIN (PHCompositeNode)/

G4HIT_ABSORBER_HCALIN (IO,PHG4HitContainer)

…

TOP: Top of Default Node Tree
Creation and populating of other
node trees is possible (used for
embedding)

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

The Node Tree

Node Tree under TopNode TOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
INTT (PHCompositeNode)/

G4HIT_INTT (IO,PHG4HitContainer)
TPC (PHCompositeNode)/

G4HIT_ABSORBER_TPC (IO,PHG4HitContainer)
RUN (PHCompositeNode)/

FIELD_CONFIG (IO,PHFieldConfigv1)
PIPE (PHCompositeNode)/

G4GEOPARAM_PIPE (IO,PdbParameterMapContainer)
CYLINDERGEOM_PIPE (IO,PHG4CylinderGeomContainer)

MVTX (PHCompositeNode)/
G4GEOPARAM_MVTX (IO,PdbParameterMapContainer)

INTT (PHCompositeNode)/
G4GEOPARAM_INTT (IO,PdbParameterMapContainer)

…

DST and RUN Node: default for I/O
•DST – eventwise
•RUN - runwise

Objects under the DST node are reset after
every event to prevent event mixing. You
can select the objects to be saved in the
output file. Subnodes like SVTX are saved
and restored as well. DST/RUN nodes can
be restored from file under other TopNodes
ROOT restrictions apply:
Objects cannot be added while running to
avoid event mixing

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

The Node Tree
Node Tree under TopNode TOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
RUN (PHCompositeNode)/

FIELD_CONFIG (IO,PHFieldConfigv1)
PIPE (PHCompositeNode)/

G4GEOPARAM_PIPE (IO,PdbParameterMapContainer)
CYLINDERGEOM_PIPE (IO,PHG4CylinderGeomContainer)

MVTX (PHCompositeNode)/
G4GEOPARAM_MVTX (IO,PdbParameterMapContainer)

INTT (PHCompositeNode)/
G4GEOPARAM_INTT (IO,PdbParameterMapContainer)

PAR (PHCompositeNode)/
FIELD_MAP (PHDataNode)
PIPE (PHCompositeNode)/

G4GEO_PIPE (PHDataNode)

…

Users can add their own PHCompositeNodes
Under the TOP Node. But then resetting the
objects is their responsibility.

The PAR node hold more complicated geometry
Objects which we do not want to save on DST

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

The Node Tree
Node Tree under TopNode TOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
HCALIN (PHCompositeNode)/

G4HIT_ABSORBER_HCALIN (IO,PHG4HitContainer)
G4HIT_HCALIN (IO,PHG4HitContainer)
G4CELL_HCALIN (IO,PHG4CellContainer)
TOWER_SIM_HCALIN (IO,RawTowerContainer)
TOWER_RAW_HCALIN (IO,RawTowerContainer)
TOWER_CALIB_HCALIN (IO,RawTowerContainer)
CLUSTER_HCALIN (IO,RawClusterContainer)

BBC (PHCompositeNode)/
BbcVertexMap (IO,BbcVertexMapv1)

TRKR (PHCompositeNode)/
TRKR_HITSET (IO,TrkrHitSetContainer)
TRKR_HITTRUTHASSOC (IO,TrkrHitTruthAssoc)
TRKR_CLUSTER (IO,TrkrClusterContainer)
TRKR_CLUSTERHITASSOC (IO,TrkrClusterHitAssoc)

…

Type of Node is given (IO is PHIODataNode)

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

Class of Data IO Object is given
(you will need to know this
when accessing the data)

The Node Tree

Node Tree under TopNode TOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
INTT (PHCompositeNode)/

G4HIT_INTT (IO,PHG4HitContainer)
TPC (PHCompositeNode)/

G4HIT_ABSORBER_TPC (IO,PHG4HitContainer)
G4HIT_TPC (IO,PHG4HitContainer)

CEMC_ELECTRONICS (PHCompositeNode)/
G4HIT_CEMC_ELECTRONICS (IO,PHG4HitContainer)

CEMC_SPT (PHCompositeNode)/
G4HIT_CEMC_SPT (IO,PHG4HitContainer)

G4HIT_CEMC (IO,PHG4HitContainer)
G4HIT_ABSORBER_CEMC (IO,PHG4HitContainer)
HCALIN (PHCompositeNode)/

G4HIT_ABSORBER_HCALIN (IO,PHG4HitContainer)
G4HIT_HCALIN (IO,PHG4HitContainer)

…

Caveat: You loose ownership once an
object is put on the node tree. Fun4All
deletes the node tree when cleaning
up. Deleting nodes is not supported (if
you give me a good reason I’ll work on
that)

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

Your Analysis Module

• Init(PHCompositeNode *topNode): called once when you register the
module with the Fun4AllServer

• InitRun(PHCompositeNode *topNode): called whenever data from a
new run is encountered

• Process_event (PHCompositeNode *topNode): called for every event

• ResetEvent(PHCompositeNode *topNode): called after each event is
processed so you can clean up leftovers of this event in your code

• EndRun(const int runnumber): called before the InitRun is called
(caveat the Node tree already contains the data from the first event of
the new run)

• End(PHCompositeNode *topNode): Last call before we quit

You need to inherit from the SubsysReco Baseclass
(offline/framework/fun4all/SubsysReco.h) which gives the methods
which are called by Fun4All. If you don’t implement all of them it’s

perfectly fine (the beauty of base classes)

If you create another node tree you can tell Fun4All to call your module
with the respective topNode when you register your modue1/29/2020 29

Okay, How do I navigate the Node Tree
which is in every argument????

#include <g4hit/PHG4HitContainer.h>

#include <fun4all/getClass.h>

Myanalysis::process_event(PHCompositeNode *topNode)

{

PHG4HitContainer *g4hits =

findNode::getClass<PHG4HitContainer>(topNode,”G4HIT_HCALIN”);

if (g4hits)
…

}

You need to know the name of the node and the class of the
object you want (e.g. some PHG4HitContainer version in the
node called G4HIT_HCALIN (that’s where the Fun4All printout
of the Node Tree comes in handy)

topNode of the node tree your
module is registered with

Caveat: getClass will return the first node of a given name, if you have
have multiple identically named nodes you need to search differently1/29/2020 30

Example 1: A simple Detector with Hardcoded Geometry

1/29/2020 EIC Tutorial on Full Detector Simulations 31

Github location:
https://github.com/EIC-Detector/g4exampledetector
g4exampledetector/simple/source
g4exampledetector/simple/macros

Yes – it is a box with a half pipe hole

Ntuple code (example 1a, 1b):
https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/simulation/g4simulation/g4histos/G4HitNtuple.cc

https://github.com/EIC-Detector/g4exampledetector
https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/simulation/g4simulation/g4histos/G4HitNtuple.cc

Example 1: A simple Detector

1/29/2020 EIC Tutorial on Full Detector Simulations 32

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example1.html

At the Root prompt:
.x Fun4All_Example01.C(-1)
.L Display.C
PHG4Reco *g4 = QTGui();

Alt F7 to move large G4 window in
windows virtual box

And on the G4 cmd line:
/Fun4All/run 1

Shell commands:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n
git clone https://github.com/EIC-Detector/g4exampledetector
cd g4exampledetector/simple/source
mkdir build
cd build
../autogen.sh -prefix=$HOME/myinstall
make install
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh
$HOME/myinstall
cd ../../macros
root.exe

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example0.html

Example 1: A simple Detector

1/29/2020 EIC Tutorial on Full Detector Simulations

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example1.html

At the Root prompt:
.x Fun4All_Example01.C(-1)
.L Display.C
PHG4Reco *g4 = QTGui();

Alt F7 to move large G4 window in
windows virtual box

And on the G4 cmd line:
/Fun4All/run 1

Shell commands:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n
git clone https://github.com/EIC-Detector/g4exampledetector
cd g4exampledetector/simple/source
mkdir build
cd build
../autogen.sh -prefix=$HOME/myinstall
make install
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh
$HOME/myinstall
cd ../../macros
root.exe

p- in center of simple detector

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example0.html

Example 1a: Geometry Verification with a
Geantino Scan

1/29/2020

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example1a.html

At the Root prompt, run 10000 events:
.x Fun4All_G4_Geantino.C(10000)

Shell commands:
root.exe

After all those rotations and translations, how do you verify that the detector position is actually
where you think it should be???

Geantino: Non interacting Geant particle, Geant4 introduced
charged Geantinos. Discovery announcements typically on April 1st

Shell commands:
root.exe HitNtuple.root

At the Root prompt:
hitntup->Draw("x1:y1:z1")
hitntup->SetMarkerColor(2);
hitntup->Draw(“x0:y0:z0“,””,”same”);

Exit hits (outer side)

Entry hits (inner side)

Absolute Coordinates (cm)

G4Hit

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example0.html

Example 1c: Saving and Reading Chain Snapshot
Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example1b.html

At the Root prompt, run 10000 events:
.x Fun4All_G4_Write_Dst.C(10000)

Shell commands:
root.exe

Shell commands:
root.exe

At the Root prompt:
hitntup->Draw("x1:y1:z1")
hitntup->SetMarkerColor(2);
hitntup->Draw(“x0:y0:z0“,””,”same”);

Exit hits (outer side)

Entry hits (inner side)

Absolute coordinates (cm)

At the Root prompt, run all events:
.x Fun4All_Read_Dst.C(0)

Shell commands:
root.exe HitsFromDst.root

Note:
no analysis code dependence in Fun4All_G4_Dst.C
No Geant4 dependence in Fun4All_Read_Dst.C
→ Dst’s can be created and read independently without having all code

Ntuple code: https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/simulation/g4simulation/g4histos/G4HitNtuple.cc

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example1b.html

Example 2:
Fast Momentum Resolution Estimate during Design Stage

What are the first questions any tracking design has to answer?
• What is the momentum resolution?
• What is the distance of closest approach?
• Can you do better?
• Do you have any idea how much this costs??? How about fewer layers?

Welcome to our full GEANT4 simulation with Kalman Filter reconstruction
and vertexing.

• Put a detector together from simple shapes in a ROOT macro (cylinders, boxes)
• Pick your particle and a couple of energies
• tell the tracking the error on the hits and run
• Wash, rinse, repeat until you(r boss) like(s) the result

1/29/2020 EIC Tutorial on Full Detector Simulations 36

Example 2:
Fast Momentum Resolution Estimate during Design Stage

Root macro in github:
https://github.com/sPHENIX-Collaboration/tutorials/Momentum/Fun4All_G4_Momentum.C

Shell commands:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n
git clone https://github.com/sPHENIX-Collaboration/tutorials
cd tutorials/Momentum
root.exe

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example2.html

At the Root prompt:
.x Fun4All_G4_Momentum.C(-1)
.L DisplayOn.C
PHG4Reco *g4 = QTGui();

And on the G4 cmd line:
/Fun4All/run 1

Let’s have a look at a
6 layer silicon detector
Radii/Thickness (in cm):

• 2.71, 0.02
• 4.63, 0.02
• 11.765, 0.0625
• 25.46, 0.032
• 41.38, 0.032
• 63.66, 0.032

Using 4GeV/c positrons

1/29/2020 37

https://github.com/sPHENIX-Collaboration/tutorials/blob/master/Momentum/Fun4All_G4_Momentum.C
https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example2.html

Example 2:
Fast Momentum Resolution Estimate during Design Stage

Positrons @ 4GeV/c at midrapidity

R
ec

o
(p

t
)/

In
p

u
t(

p
t
)

d
ca

2
d

Nominal X10 Si thickness ½ layer radius 1/10 resolution

1/29/2020 EIC Tutorial on Full Detector Simulations 38

Example 2:
Fast Momentum Resolution Estimate during Design Stage

1/29/2020 EIC Tutorial on Full Detector Simulations 39

Example 2:
Fast Momentum Resolution Estimate during Design Stage

This prospect
is meant to
motivate you
to learn about
programming
loops and
running batch
jobs

1/29/2020 EIC Tutorial on Full Detector Simulations 40

Example 3: Adding detectors to existing setups

1/29/2020

Cut and paste commands from https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example3.html

Shell commands:
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/eic_setup.sh -n
source /cvmfs/eic.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/setup_local.sh $HOME/myinstall
git clone https://github.com/sPHENIX-Collaboration/macros
cd macros/macros/g4simulations
root.exe

At the Root prompt:
.x Fun4All_G4_EICDetector.C(-1)
.L DisplayOn.C
PHG4Reco *g4 = DisplayOn();
g4->ApplyCommand("/vis/viewer/panTo 0 100 cm")

QT is way to slow for more complex
detectors but you are welcome to try
PHG4Reco *g4 = QTGui();

https://www.phenix.bnl.gov/WWW/publish/phnxbld/EIC/tutorial/example2.html

Now open G4Setup_EICDetector.C and add 4 lines:
After line 27:
#include <g4lmondetector/G4LmonSubsystem.h>
R__LOAD_LIBRARY(libg4lmondetector.so)
After line 310 (before the truth subsystem):
G4LmonSubsystem *lmon = new G4LmonSubsystem("LumiMon");
g4Reco->registerSubsystem(lmon);

Example 3: Adding detectors to existing setups

1/29/2020 EIC Tutorial on Full Detector Simulations 42

The fine print:
The stepping action does not put any objects on our node tree
This does not include the detector into any analysis chain
There are overlaps (the vacuum box) which need to be dealt with
Our world is filled with G4_Air, need to add a vacuum system

Now open G4Setup_EICDetector.C

HELP!!!!!!!

• Documentation (more to come):
https://eic-detector.github.io

• Mattermost chat (BNL hosted open source slack). It is a public channel. Rcf accounts can
subscribe, non BNL accounts need invite:
https://chat.sdcc.bnl.gov/eic/channels/fun4all-software-support

• Last resort:
Send mail to or Chris Pinkenburg (pinkenburg at bnl.gov) and/or Jin Huang (jinhuang at
bnl.gov)

1/29/2020 EIC Tutorial on Full Detector Simulations 43

https://eic-detector.github.io/
https://chat.sdcc.bnl.gov/eic/channels/fun4all-software-support

Final Remarks

1/29/2020 EIC Tutorial on Full Detector Simulations 44

• This was just a small selection of our capabilities
• Fun4All was already used to simulate and design a new collider detector
• Fun4All was used for published EIC detector concepts
• Synergy: Collaboration with an existing experiment ensures long term support and warm

bodies to work on it
• Reuse existing code (tracking, clustering, calibrations,…)
• Read and reconstruct raw data from a commonly used daq (rcdaq)

• EIC specific detectors can go into their own repository (https://github.com/EIC-Detector)
• EIC cvmfs volume: /cvmfs/eic.opensciencegrid.org
• EIC specific 3rd party libraries can be installed there
• Users can use their own repository and just link against Fun4All in cvmfs
• Distribution in cvmfs and singularity container run on most platforms (including Jlab and

OSG)
Congratulations – you made it!

You have gone too far

Partial JLEIC reverse engineered from g4e
• Two days of work (mostly

spend on re-familiarizing
how we do this)

• Only one Box detector
(vtx) needed actual cut
and paste coding
• Just too lazy to look

into our generic boxes
• Forward/backward only

container volumes
• Forward/Backward pieces

missing

CLEO Magnet

Hcal (25 Cylinders Fe, no scintillator)

Hadron Endcap (250cm Fe)

8 layer GEM tracker

Electron Endcap (60cm Fe)

VTX, 6 layers Si

DIRC

CTD, 12 layers Si

sPHENIX beampipe

https://gitlab.com/jlab-eic/g4e/

EIC Tutorial on Full Detector Simulations 46

https://gitlab.com/jlab-eic/g4e/

